Enclosed “non-conventional” photobioreactors for microalga production: A review

Algal Research - Tập 52 - Trang 102107 - 2020
Joana Assunção1,2, F. Xavier Malcata1,3
1LEPABE – Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal
2Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P-4450-208 Matosinhos, Portugal
3Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal

Tài liệu tham khảo

Spolaore, 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87, 10.1263/jbb.101.87 Mata, 2010, Microalgae for biodiesel production and other applications: A review, Renew, Sustain. Energy Rev, 14, 217, 10.1016/j.rser.2009.07.020 Brennan, 2010, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009 Assunção, 2017, Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates, Mar. Drugs., 15, 1, 10.3390/md15120393 Chen, 2011, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 102, 71, 10.1016/j.biortech.2010.06.159 Chisti, 2007, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002 John, 2011, Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 102, 186, 10.1016/j.biortech.2010.06.139 Singh, 2012, Development of suitable photobioreactor for algae production - a review, Renew. Sust. Energ. Rev., 16, 2347, 10.1016/j.rser.2012.01.026 Show, 2017, A holistic approach to managing microalgae for biofuel applications, Int. J. Mol. Sci., 18, 1, 10.3390/ijms18010215 Zeiler, 1995, The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas, Energy Convers. Manag., 36, 707, 10.1016/0196-8904(95)00103-K Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707, 10.1007/s00253-008-1518-y Lam, 2012, Current status and challenges on microalgae-based carbon capture, Int. J. Greenh. Gas Control., 10, 456, 10.1016/j.ijggc.2012.07.010 Mallick, 2002, Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals., 15, 377, 10.1023/A:1020238520948 Rahaman, 2011, A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes, Renew. Sust. Energ. Rev., 15, 4002, 10.1016/j.rser.2011.07.031 Zittelli, 2013, Photobioreactors for Microalgal Biofuel Production, 115 Torzillo, 2015, Tubular Photobioreactors, vol. 2, 187 Gouveia, 2009, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269, 10.1007/s10295-008-0495-6 Płaczek, 2017, Technical evaluation of photobioreactors for microalgae cultivation, 02032 Carvalho, 2006, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog., 22, 1490, 10.1002/bp060065r Chang, 2017, Photobioreactors, 313 Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001 Gupta, 2015, A mini review: photobioreactors for large scale algal cultivation, World J. Microbiol. Biotechnol., 31, 1409, 10.1007/s11274-015-1892-4 Schenk, 2008, Second generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Res., 1, 20, 10.1007/s12155-008-9008-8 Gallardo-Rodríguez, 2012, Bioactives from microalgal dinoflagellates, Biotechnol. Adv., 30, 1673, 10.1016/j.biotechadv.2012.07.005 García-Camacho, 2007, Biotechnological significance of toxic marine dinoflagellates, Biotechnol. Adv., 25, 176, 10.1016/j.biotechadv.2006.11.008 Posten, 2009, Design principles of photo-bioreactors for cultivation of microalgae, Eng. Life Sci., 9, 165, 10.1002/elsc.200900003 Vasumathi, 2012, Parameters influencing the design of photobioreactor for the growth of microalgae, Renew. Sust. Energ. Rev., 16, 5443, 10.1016/j.rser.2012.06.013 Wang, 2012, Closed photobioreactors for production of microalgal biomasses, Biotechnol. Adv., 30, 904, 10.1016/j.biotechadv.2012.01.019 Huang, 2017, Design of Photobioreactors for mass cultivation of photosynthetic organisms, Engineering., 3, 318, 10.1016/J.ENG.2017.03.020 Tredici, 1998, Efficiency of sunlight utilization: tubular versus flat photobioreactors, Biotechnol. Bioeng., 57, 187, 10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J Richmond, 2001, Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors, J. Biotechnol., 85, 259, 10.1016/S0168-1656(00)00353-9 Richmond, 2003, Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition, Biomol. Eng., 20, 229, 10.1016/S1389-0344(03)00060-1 Slegers, 2013, Scenario analysis of large scale algae production in tubular photobioreactors, Appl. Energy, 105, 395, 10.1016/j.apenergy.2012.12.068 Molina Grima, 2001, Tubular photobioreactor design for algal cultures, J. Biotechnol., 92, 113, 10.1016/S0168-1656(01)00353-4 Sánchez Mirón, 2000, Bubble-column and airlift photobioreactors for algal culture, AICHE J., 46, 1872, 10.1002/aic.690460915 Sánchez-Mirón, 2004, Mixing in bubble column and airlift reactors, Chem. Eng. Res. Des., 82, 1367, 10.1205/cerd.82.10.1367.46742 Anjos, 2013, Optimization of CO2 bio-mitigation by Chlorella vulgaris, Bioresour. Technol, 139, 149, 10.1016/j.biortech.2013.04.032 Duan, 2014, Bioreactor design for algal growth as a sustainable energy source, 27 Dasgupta, 2010, Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production, Int. J. Hydrog. Energy, 35, 10218, 10.1016/j.ijhydene.2010.06.029 Olivieri, 2014, Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications, J. Chem. Technol. Biotechnol., 89, 178, 10.1002/jctb.4218 Pruvost, 2016, Microalgae culture in building-integrated photobioreactors: biomass production modelling and energetic analysis, Chem. Eng. J., 284, 850, 10.1016/j.cej.2015.08.118 Kim, 2016, Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing, Bioprocess Biosyst. Eng., 39, 713, 10.1007/s00449-016-1552-6 Lv, 2010, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797, 10.1016/j.biortech.2010.03.120 Herrmann, 1997, Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR, plant, Cell Environ., 20, 359, 10.1046/j.1365-3040.1997.d01-77.x Pessoa, 2012, Harmful effects of UV radiation in algae and aquatic macrophytes – a review, Emirates J. Food Agric., 24, 510, 10.9755/ejfa.v24i6.510526 Mussgnug, 2007, Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion, Plant Biotechnol. J., 5, 802, 10.1111/j.1467-7652.2007.00285.x Pilát, 2013, Optical trapping of microalgae at 735–1064 nm: Photodamage assessment, J. Photochem. Photobiol. B Biol., 121, 27, 10.1016/j.jphotobiol.2013.02.006 Tredici, 2007, Mass production of microalgae: Photobioreactors, 178 Janssen, 2003, Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects, Biotechnol. Bioeng., 81, 193, 10.1002/bit.10468 Abu-Ghosh, 2016, Flashing light in microalgae biotechnology, Bioresour. Technol., 203, 357, 10.1016/j.biortech.2015.12.057 Barbosa, 2003, Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency, Biotechnol. Bioeng., 82, 170, 10.1002/bit.10563 Nwoba, 2019, Light management technologies for increasing algal photobioreactor efficiency, Algal Res., 39, 101433, 10.1016/j.algal.2019.101433 Strümpel, 2007, Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials, Sol. Energy Mater. Sol. Cells, 91, 238, 10.1016/j.solmat.2006.09.003 Richmond, 2004, Principles for attaining maximal microalgal productivity in photobioreactors: an overview, Hydrobiologia., 512, 33, 10.1023/B:HYDR.0000020365.06145.36 Karemore, 2015, 103 Cañedo, 2016, Considerations for Photobioreactor design and operation for mass cultivation of microalgae, 55 Guedes, 2012, Bioreactors for microalgae: A review of designs, features and applications, 1 Kumar, 2011, Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria, Bioresour. Technol., 102, 4945, 10.1016/j.biortech.2011.01.054 Degen, 2001, A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect, J. Biotechnol., 92, 89, 10.1016/S0168-1656(01)00350-9 Ugwu, 2003, Design of static mixers for inclined tubular photobioreactors, J. Appl. Phycol., 15, 217, 10.1023/A:1023837400050 Perner-Nochta, 2007, Simulations of light intensity variation in photobioreactors, J. Biotechnol., 131, 276, 10.1016/j.jbiotec.2007.05.024 Yang, 2016, Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor, Bioresour. Technol., 211, 519, 10.1016/j.biortech.2016.03.145 Wang, 2018, Effects of shear stress on microalgae – a review, Biotechnol. Adv., 36, 986, 10.1016/j.biotechadv.2018.03.001 Suh, 2003, Photobioreactor engineering: design and performance, Biotechnol. Bioprocess Eng., 8, 313, 10.1007/BF02949274 Doucha, 2005, Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7 C.M. Su, H.T. Hsueh, H.H. Chen, H. Chu, Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system., Chemosphere. 88 (2012) 706–811. https://doi.org/10.1016/j.chemosphere.2012.04.011. Sobczuk, 2000, Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift Photobioreactors, Biotechnol. Bioeng., 67, 465, 10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9 Juneja, 2013, Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies., 6, 4607, 10.3390/en6094607 Torzillo, 2003, Biological constraints in algal biotechnology, Biotechnol. Bioprocess Eng., 8, 338, 10.1007/BF02949277 Richmond, 1993, A new tubular reactor for mass production of microalgae outdoors, J. Appl. Phycol., 5, 327, 10.1007/BF02186235 Morita, 2000, Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae, Biotechnol. Bioeng., 69, 693, 10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0 Fernández, 2001, Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance, Chem. Eng. Sci., 56, 2721, 10.1016/S0009-2509(00)00521-2 Fuentes, 2001, Biomass nutrient profiles of the microalga Nannochloropsis, J. Agric. Food Chem., 49, 2966, 10.1021/jf0010376 Ho, 2014, Perspectives on engineering strategies for improving biofuel production from microalgae — a critical review, Biotechnol. Adv., 32, 1448, 10.1016/j.biotechadv.2014.09.002 Cho, 2019, Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation, Bioresour. Technol., 281, 118, 10.1016/j.biortech.2019.02.063 Ran, 2019, Storage of starch and lipids in microalgae: biosynthesis and manipulation by nutrients, Bioresour. Technol., 291, 121894, 10.1016/j.biortech.2019.121894 Fu, 2016, A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients, Bioresour. Technol., 214, 629, 10.1016/j.biortech.2016.04.081 Pereira, 2013, Parametric sensitivity analysis for temperature control in outdoor photobioreactors, Bioresour. Technol., 144, 548, 10.1016/j.biortech.2013.07.009 Raven, 2003, Adaptation, acclimation and regulation in algal photosynthesis, 385, 10.1007/978-94-007-1038-2_17 Zheng, 2012, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour. Technol., 126, 24, 10.1016/j.biortech.2012.09.048 Mehlitz, 2009 Pereira, 2014, Hollow glass microspheres for temperature and irradiance control in photobioreactors, Bioresour. Technol., 158, 98, 10.1016/j.biortech.2014.01.143 Nwoba, 2020, Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation, Algal Res., 45, 101731, 10.1016/j.algal.2019.101731 Nwoba, 2019, Can solar control infrared blocking films be used to replace evaporative cooling for growth of Nannochloropsis sp . in plate photobioreactors ?, Algal Res, 39, 101441, 10.1016/j.algal.2019.101441 Fernández, 2010, Modelling and control issues of pH in tubular photobioreactors, IFAC Proc. Vol., 43, 186, 10.3182/20100707-3-BE-2012.0046 Benemann, 1987, Microalgae biotechnology, Trends Biotechnol., 5, 47, 10.1016/0167-7799(87)90037-0 Wiley, 2013, Microalgae cultivation using offshore membrane enclosures for growing algae (OMEGA), J. Sustain. Bioenergy Syst., 3, 18, 10.4236/jsbs.2013.31003 1998, An Automated Helical Photobioreactor Incorporating Cyanobacteria for Continuous Hydrogen Production, 431 Koller, 2015, Design of closed photobioreactors for algal cultivation, 133 Merchuk, 1986, Gas hold-up and liquid velocity in a two-dimensional air lift reactor, Chem. Eng. Sci., 41, 11, 10.1016/0009-2509(86)85192-2 Burlew, 1953 Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702 Hu, 1998, Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor, Appl. Microbiol. Biotechnol., 49, 655, 10.1007/s002530051228 Kumar, 2015, 35 Hafez, 2014, Biological Hydrogen Production: Light-Driven Processes, 322 Eriksen, 2008, The technology of microalgal culturing, Biotechnol. Lett., 30, 1525, 10.1007/s10529-008-9740-3 Mirón, 1999, Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, J. Biotechnol., 70, 249, 10.1016/S0168-1656(99)00079-6 Grima, 1994, Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture, Appl. Microbiol. Biotechnol., 41, 23, 10.1007/BF00166076 Meireles, 2002, On-line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system, Biotechnol. Prog., 18, 1387, 10.1021/bp020283u Doran, 2013 Chiu, 2009, The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal, Eng. Life Sci., 9, 254, 10.1002/elsc.200800113 Chisti, 1989 Iqbal, 1993, A flat-sided photobioreactor for culturing microalgae, Aquac. Eng., 12, 183, 10.1016/0144-8609(93)90010-9 Tredici, 1991, A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria, Bioresour. Technol., 38, 153, 10.1016/0960-8524(91)90147-C Tredici, 1992, From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms, J. Appl. Phycol., 4, 221, 10.1007/BF02161208 Pulz, 1995, Light energy supply in plate type and ligh diffusing optical fiber bioreactors, J. Appl. Phycol., 7, 145, 10.1007/BF00693061 Hu, 1996, Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor, J. Appl. Phycol., 8, 139, 10.1007/BF02186317 Hu, 1996, A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs, Biotechnol. Bioeng., 51, 51, 10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-# Hu, 1996, Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities, J. Phycol., 32, 1066, 10.1111/j.0022-3646.1996.01066.x Hu, 1998, Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (cyanobacteria), Eur. J. Phycol., 33, 165, 10.1080/09670269810001736663 Gilbert, 2011, Hydrogen production using Rhodobacter sphaeroides (O.U. 001) in a flat panel rocking photobioreactor, Int. J. Hydrogen Energy, 36, 3434, 10.1016/j.ijhydene.2010.12.012 Vogel, 2017, Culture of Spirogyra sp . in a flat - panel airlift photobioreactor, 3, Biotech Huang, 2015, Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics, Bioresour. Technol., 182, 151, 10.1016/j.biortech.2015.01.067 Huang, 2014, Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient, Bioresour. Technol., 159, 8, 10.1016/j.biortech.2014.01.134 Eze, 2017, A novel flat plate air-lift photobioreactor with inclined reflective broth circulation guide for improved biomass and lipid productivity by Desmodesmus subspicatus LC172266, J. Appl. Phycol., 29, 2745, 10.1007/s10811-017-1153-z Sato, 2006, Invention of outdoor closed type photobioreactor for microalgae, Energy Convers. Manag., 47, 791, 10.1016/j.enconman.2005.06.010 Lee, 1995, Design and performance of an alpha-type tubular photobioreactor for mass cultivation of microalgae, J. Appl. Phycol., 7, 47, 10.1007/BF00003549 Bosma, 2014, Design and construction of the microalgal pilot facility AlgaePARC, Algal Res., 6, 160, 10.1016/j.algal.2014.10.006 de Vree, 2016, Turbidostat operation of outdoor pilot-scale photobioreactors, Algal Res., 18, 198, 10.1016/j.algal.2016.06.006 Watanabe, 1995, Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis, Energy Convers. Manag., 36, 721, 10.1016/0196-8904(95)00106-N Travieso, 2001, A helical tubular photobioreactor producing spirulina in a semicontinuous mode, Int. Biodeterior. Biodegradation, 47, 151, 10.1016/S0964-8305(01)00043-9 Carlozzi, 2005, Growth characteristics of Arthrospira platensis cultured inside a new close-coil photobioreactor incorporating a mandrel to control culture temperature, Biotechnol. Bioeng., 90, 675, 10.1002/bit.20425 Tanaka, 2002, Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers, Appl. Microbiol. Biotechnol, 58, 600, 10.1007/s00253-002-0940-9 Ugwu, 2005, Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass, Biotechnol. Lett., 27, 75, 10.1007/s10529-004-6931-4 Ugwu, 2005, Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers, Process Biochem., 40, 3406, 10.1016/j.procbio.2005.01.023 Zhang, 2013, Study of hydrodynamic characteristics in tubular photobioreactors, Bioprocess Biosyst. Eng., 36, 143, 10.1007/s00449-012-0769-2 Cheng, 2016, Computational fluid dynamics simulation of mixing characteristics and light regime in tubular photobioreactors with novel static mixers, J. Chem. Technol. Biotechnol., 91, 327, 10.1002/jctb.4560 Yan, 2018, Mixing characteristics, cell trajectories, pressure loss and shear stress of tubular photobioreactor with inserted self-rotating helical rotors, J. Chem. Technol. Biotechnol., 93, 1261, 10.1002/jctb.5484 Qin, 2019, Influence of successive and independent arrangement of Kenics mixer units on light / dark cycle and energy consumption in a tubular microalgae photobioreactor, Algal Res., 37, 17, 10.1016/j.algal.2018.09.020 Chang, 2016, Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon, Bioresour. Technol., 206, 231, 10.1016/j.biortech.2016.01.087 Yang, 2017, Experimental study on microalgae cultivation in novel photobioreactor of concentric double tubes with aeration pores along tube length direction, Int. J. Green Energy., 14, 1269, 10.1080/15435075.2017.1402772 Öncel, 2016, Façade integrated photobioreactors for building energy efficiency, 237 Lam, 2014, Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production, Energy Convers. Manag., 88, 399, 10.1016/j.enconman.2014.08.063 Zittelli, 2003, Mass cultivation of Nannochloropsis sp. in annular reactors, J. Appl. Phycol, 15, 107, 10.1023/A:1023830707022 Loubiere, 2011, Investigations in an external-loop airlift photobioreactor with annular light chambers and swirling flow, Chem. Eng. Res. Des., 89, 164, 10.1016/j.cherd.2010.06.001 Miller, 1964, Hydromechanical method to increase efficiency of algal photosynthesis, Ind. Eng. Chem. Process. Des. Dev., 3, 134, 10.1021/i260010a008 Kliphuis, 2010, Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor, Biotechnol. Prog., 26, 687, 10.1002/btpr.379 Pruvost, 2006, Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor, Chem. Eng. Sci., 61, 4476, 10.1016/j.ces.2006.02.027 Ifrim, 2013, Multivariable feedback linearizing control of Chlamydomonas reinhardtii photoautotrophic growth process in a torus photobioreactor, Chem. Eng. J., 218, 191, 10.1016/j.cej.2012.11.133 Pruvost, 2004, Numerical investigation of bend and torus flows, part I : effect of swirl motion on flow structure in U-bend, Chem. Eng. Sci., 59, 3345, 10.1016/j.ces.2004.03.040 D. Özçimen, M.Ö. Gülyurt, B. İnan, Algal Biorefinery for Biodiesel Production, in: Z. Fang (Ed.), Feed. Prod. Appl., IntechOpen, 2012: 25–57. https://doi.org/https://doi.org/10.5772/52679. T. Matsunaga, H. Takeyama, H. Sudo, N. Oyama, S. Ariura, H. Takano, M. Hirano, J.G. Burgess, K. Sode, N. Nakamura, Glutamate production from CO2 by Marine Cyanobacterium Synechococcus sp. - Using a Novel Biosolar Reactor Employing Light-Diffusing Optical Fibers, Appl. Biochem. Biotechnol. 28–29 (1991) 157–167. https://doi.org/10.1007/BF02922597. Ogbonna, 1996, A novel internally illuminated stirred tank photobioreactor for large- scale cultivation of photosynthetic cells, J. Ferment. Bioeng., 82, 61, 10.1016/0922-338X(96)89456-6 Ogbonna, 1999, An integrated solar and artificial light system for illumination of photobioreactors, J. Biotechnol., 70, 289, 10.1016/S0168-1656(99)00081-4 Suh, 2003, A light distribution model for an internally radiating photobioreactor, Biotechnol. Bioeng., 82, 180, 10.1002/bit.10558 Ponte, 2016, Advances for opaque PBR internally illuminated for fiber optic for microalgae production, Nat. Sci., 3, 1 Mori, 1986 Xue, 2013, A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae, Bioresour. Technol., 138, 141, 10.1016/j.biortech.2013.03.156 Hincapie, 2015, Design, construction, and validation of an internally lit air-lift Photobioreactor for growing algae, Front. Energy Res., 2, 1, 10.3389/fenrg.2014.00065 Xu, 2009, Microalgal bioreactors: challenges and opportunities, Eng. Life Sci., 9, 178, 10.1002/elsc.200800111 Sun, 2016, Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor, Bioresour. Technol., 207, 31, 10.1016/j.biortech.2016.01.136 Sun, 2016, Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth, Bioresour. Technol., 220, 215, 10.1016/j.biortech.2016.08.063 Jung, 2014, Stacked optical waveguide photobioreactor for high density algal cultures, Bioresour. Technol., 171, 495, 10.1016/j.biortech.2014.08.093 Ahsan, 2015, Integrated hollow fiber membranes for gas delivery into optical waveguide based photobioreactors, Bioresour. Technol., 192, 845, 10.1016/j.biortech.2015.06.028 Ahsan, 2014, Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation, Opt. Express, 22, A1526, 10.1364/OE.22.0A1526 Jain, 2015, Optimal intensity and biomass density for biofuel production in a thin-light-path Photobioreactor, Environ. Sci. Technol., 49, 6327, 10.1021/es5052777 El-Shishtawy, 1997, Biological H2 production using a novel light-induced and diffused photoreactor, Biotechnol. Tech., 11, 403, 10.1023/A:1018464622224 Pierobon, 2016, Breathable waveguides for combined light and CO2 delivery to microalgae, Bioresour. Technol., 209, 391, 10.1016/j.biortech.2016.03.016 Yam, 2005, Innovative advances in LED technology, Microelectron. J., 36, 129, 10.1016/j.mejo.2004.11.008 Schulze, 2014, Light emitting diodes (LEDs) applied to microalgal production, Trends Biotechnol., 32, 422, 10.1016/j.tibtech.2014.06.001 Glemser, 2016, Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives, Appl. Microbiol. Biotechnol., 100, 1077, 10.1007/s00253-015-7144-6 Carvalho, 2011, Light requirements in microalgal photobioreactors: an overview of biophotonic aspects, Appl. Microbiol. Biotechnol., 89, 1275, 10.1007/s00253-010-3047-8 Lee, 1995, Light emitting diode-based algal photobioreactor with external gas exchange, J. Ferment. Bioeng., 79, 257, 10.1016/0922-338X(95)90613-5 Tamburic, 2011, Design of a novel flat-plate photobioreactor system for green algal hydrogen production, Int. J. Hydrog. Energy, 36, 6578, 10.1016/j.ijhydene.2011.02.091 Rosales, 2017, Modeling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors, Bioresour. Technol., 245, 250, 10.1016/j.biortech.2017.08.161 Hu, 2017, A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement, Energy Convers. Manag., 558, 10.1016/j.enconman.2016.11.008 Yim, 2016, Internally illuminated photobioreactor using a novel type of light-emitting diode (LED) bar for cultivation of Arthrospira platensis, Biotechnol. Bioprocess Eng., 21, 767, 10.1007/s12257-016-0428-6 Malapascua, 2019, Photosynthesis and growth kinetics of chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor, Photosynthetica., 57, 103, 10.32615/ps.2019.031 Hang Ho, 2018, Maximization of astaxanthin production from green microalga Haematococcus pluvialis using internally-illuminated photobioreactor, Adv. Biosci. Bioeng., 6, 10 Kalontarov, 2013, In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity, RSC Adv., 3, 13203, 10.1039/c3ra40454d Fan, 2007, Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor, Chem. Eng. Technol., 30, 1094, 10.1002/ceat.200700141 Carvalho, 2001, Transfer on carbon dioxide within cultures of micro algae: plain bubbling versus hollow-fibre modules, Biotechnol. Prog., 17, 265, 10.1021/bp000157v Cheng, 2006, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep. Purif. Technol., 50, 324, 10.1016/j.seppur.2005.12.006 Fan, 2008, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, J. Memb. Sci., 325, 336, 10.1016/j.memsci.2008.07.044 Y. Sano, A. Horibe, N. Haruki, Y. Okino, Microalgal Culture for Chlorella sp . using a Hollow Fiber Membrane Module, J. Membra. Sci .Technol . 6 (2016) 1–6. https://doi.org/10.4172/2155-9589.1000147. Mantzorou, 2019, Microalgal biofilms: a further step over current microalgal cultivation techniques, Sci. Total Environ., 651, 3187, 10.1016/j.scitotenv.2018.09.355 Johnson, 2010, Development of an attached microalgal growth system for biofuel production, Appl. Microbiol. Biotechnol., 85, 525, 10.1007/s00253-009-2133-2 Christenson, 2012, Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products, Biotechnol. Bioeng., 109, 1674, 10.1002/bit.24451 Liu, 2013, Attached cultivation technology of microalgae for efficient biomass feedstock production, Bioresour. Technol., 127, 216, 10.1016/j.biortech.2012.09.100 Cheng, 2013, The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation, Bioresour. Technol., 138, 95, 10.1016/j.biortech.2013.03.150 Gross, 2013 Genin, 2014, Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content, Bioresour. Technol., 155, 136, 10.1016/j.biortech.2013.12.060 Gao, 2015, A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent, Bioresour. Technol., 179, 8, 10.1016/j.biortech.2014.11.108 Schnurr, 2013, Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation, Bioresour. Technol., 136, 337, 10.1016/j.biortech.2013.03.036 Boelee, 2014, The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing, J. Appl. Phycol., 26, 1439, 10.1007/s10811-013-0178-1 Lee, 2014, Higher biomass productivity of microalgae in an attached growth system, using wastewater, J. Microbiol. Biotechnol., 24, 1566, 10.4014/jmb.1406.06057 Podola, 2016, Porous substrate bioreactors - a paradigm shift in microalgal biotechnology?, Trends Biotechnol., 35, 122 Katarzyna, 2015, Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs, Renew. Sust. Energ. Rev., 42, 1418, 10.1016/j.rser.2014.11.029 Kondo, 2006, Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment, Int. J. Hydrog. Energy, 31, 1522, 10.1016/j.ijhydene.2006.06.019 Xu, 2017, Attached microalgae cultivation and nutrients removal in a novel capillary-driven photo-biofilm reactor, Algal Res., 27, 198, 10.1016/j.algal.2017.08.028 Pruvost, 2017, Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm ©) based on process intensification principles, Algal Res., 21, 120, 10.1016/j.algal.2016.10.012 Doucha, 1995, Novel outdoor thin-layer high density microalgal culture system : productivity and operational parameters, Arch. Hydrobiol. Suppl. Algol. Stud., 76, 129 J. Doucha, High Density Outdoor Microalgal Culture, in: R. Bajpai, Z. Prokop, A., M. (Eds.), Algal Biorefineries Vol.1 Cultiv. Cells Prod., Springer, Dordrecht Heilberg, London New York, 2014:147–173. https://doi.org/10.13140/2.1.1147.0400. Borowitzka, 1999, Commercial production of microalgae: ponds, tanks, tubes and fermenters, J. Biotechnol., 70, 313, 10.1016/S0168-1656(99)00083-8 Doucha, 2005, Utilization of flue gas for cultivation of microalgae chlorella sp. in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7 Huntley, 2006, CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal, Mitig. Adap. Strat. Global Chan., 6, 573 Mottahedeh Velea, 2014, New Photobioreactor Design for Enhancing the photosynthetic productivity of chlorella homosphaera culture, Rev. Chim., 2, 1 de Jesus, 2015, Influence of impeller type on hydrodynamics and gas-liquid mass-transfer in stirred airlift bioreactor, AICHE J., 61, 3159, 10.1002/aic.14871 Deprá, 2019, A new hybrid photobioreactor design for microalgae culture, Chem. Eng. Res. Des., 144, 1, 10.1016/j.cherd.2019.01.023 Hashemi, 2020, Beta-carotene production within Dunaliella salina cells under salt stress condition in an indoor hybrid helical-tubular photobioreactor, Can. J. Chem. Eng., 98, 69, 10.1002/cjce.23577 Shimamura, 2012, Development of Botryococcus seed culture system for future mass culture, Procedia Environ. Sci., 15, 80, 10.1016/j.proenv.2012.05.013 Sato, 2010, Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect, Energy Convers. Manag., 51, 1196, 10.1016/j.enconman.2009.12.030 Watanabe, 1997, Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Manag, 38, S499, 10.1016/S0196-8904(96)00317-2 M. Morita, Y. Watanabe, T. Okawa, H. Saiki, Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions., Biotechnol. Bioeng. 74 (2001) 136–44. http://www.ncbi.nlm.nih.gov/pubmed/11370002 (accessed June 12, 2018). SOLEY, Pyramid Photobioreactor - SOLEY BIOTECHNOLOGY INSTITUTE,. http://www.soleybio.com/photobioreactor.html (accessed November 14, 2018). Kumar, 2010, A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach, J. Chem. Technol. Biotechnol., 85, 387, 10.1002/jctb.2332 Hahne, 2014, Disposable algae cultivation for high-value products using all around LED-illumination directly on the bags, J. Algal Biomass Util., 5, 66 Abomohra, 2014, Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel, Biomass Bioenergy, 64, 237, 10.1016/j.biombioe.2014.03.049 Sierra, 2008, Characterization of a flat plate photobioreactor for the production of microalgae, Chem. Eng. J., 138, 136, 10.1016/j.cej.2007.06.004 Pham, 2017, Development of an X-shape airlift photobioreactor for increasing algal biomass and biodiesel production, Bioresour. Technol., 239, 211, 10.1016/j.biortech.2017.05.030 Yan, 2016, A novel low-cost thin-film flat plate photobioreactor for microalgae cultivation, Biotechnol. Bioprocess Eng., 21, 103, 10.1007/s12257-015-0327-2 Lehmann, 2013, Wave-mixed and orbitally shaken single-use photobioreactors for diatom algae propagation, Chemie-Ingenieur-Technik., 85, 197, 10.1002/cite.201200137 Schlagermann, 2012, Composition of algal oil and its potential as biofuel, J. Combust., 2012, 10.1155/2012/285185 Elrayies, 2018, Microalgae: prospects for greener future buildings, Renew. Sust. Energ. Rev., 81, 1175, 10.1016/j.rser.2017.08.032 Masojídek, 2003, A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance, J. Appl. Phycol., 15, 239, 10.1023/A:1023849117102 Heining, 2014, Internal illumination of photobioreactors via wireless light emitters: a proof of concept, J. Appl. Phycol., 27, 59, 10.1007/s10811-014-0290-x Camacho, 2000, Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum, Process Biochem., 35, 1045, 10.1016/S0032-9592(00)00138-2 Zhang, 2016, Advances in airlift reactors: modified design and optimization of operation conditions, Rev. Chem. Eng., 33, 163, 10.1515/revce-2016-0005 Huntley, 2015, Demonstrated large-scale production of marine microalgae for fuels and feed, ALGAL, 24 Iñiguez, 2018, Recyclability of four types of plastics exposed to UV irradiation in a marine environment, Waste Manag., 79, 339, 10.1016/j.wasman.2018.08.006