Enclosed “non-conventional” photobioreactors for microalga production: A review
Tài liệu tham khảo
Spolaore, 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87, 10.1263/jbb.101.87
Mata, 2010, Microalgae for biodiesel production and other applications: A review, Renew, Sustain. Energy Rev, 14, 217, 10.1016/j.rser.2009.07.020
Brennan, 2010, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009
Assunção, 2017, Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates, Mar. Drugs., 15, 1, 10.3390/md15120393
Chen, 2011, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 102, 71, 10.1016/j.biortech.2010.06.159
Chisti, 2007, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002
John, 2011, Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 102, 186, 10.1016/j.biortech.2010.06.139
Singh, 2012, Development of suitable photobioreactor for algae production - a review, Renew. Sust. Energ. Rev., 16, 2347, 10.1016/j.rser.2012.01.026
Show, 2017, A holistic approach to managing microalgae for biofuel applications, Int. J. Mol. Sci., 18, 1, 10.3390/ijms18010215
Zeiler, 1995, The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas, Energy Convers. Manag., 36, 707, 10.1016/0196-8904(95)00103-K
Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707, 10.1007/s00253-008-1518-y
Lam, 2012, Current status and challenges on microalgae-based carbon capture, Int. J. Greenh. Gas Control., 10, 456, 10.1016/j.ijggc.2012.07.010
Mallick, 2002, Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals., 15, 377, 10.1023/A:1020238520948
Rahaman, 2011, A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes, Renew. Sust. Energ. Rev., 15, 4002, 10.1016/j.rser.2011.07.031
Zittelli, 2013, Photobioreactors for Microalgal Biofuel Production, 115
Torzillo, 2015, Tubular Photobioreactors, vol. 2, 187
Gouveia, 2009, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269, 10.1007/s10295-008-0495-6
Płaczek, 2017, Technical evaluation of photobioreactors for microalgae cultivation, 02032
Carvalho, 2006, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog., 22, 1490, 10.1002/bp060065r
Chang, 2017, Photobioreactors, 313
Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001
Gupta, 2015, A mini review: photobioreactors for large scale algal cultivation, World J. Microbiol. Biotechnol., 31, 1409, 10.1007/s11274-015-1892-4
Schenk, 2008, Second generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Res., 1, 20, 10.1007/s12155-008-9008-8
Gallardo-Rodríguez, 2012, Bioactives from microalgal dinoflagellates, Biotechnol. Adv., 30, 1673, 10.1016/j.biotechadv.2012.07.005
García-Camacho, 2007, Biotechnological significance of toxic marine dinoflagellates, Biotechnol. Adv., 25, 176, 10.1016/j.biotechadv.2006.11.008
Posten, 2009, Design principles of photo-bioreactors for cultivation of microalgae, Eng. Life Sci., 9, 165, 10.1002/elsc.200900003
Vasumathi, 2012, Parameters influencing the design of photobioreactor for the growth of microalgae, Renew. Sust. Energ. Rev., 16, 5443, 10.1016/j.rser.2012.06.013
Wang, 2012, Closed photobioreactors for production of microalgal biomasses, Biotechnol. Adv., 30, 904, 10.1016/j.biotechadv.2012.01.019
Huang, 2017, Design of Photobioreactors for mass cultivation of photosynthetic organisms, Engineering., 3, 318, 10.1016/J.ENG.2017.03.020
Tredici, 1998, Efficiency of sunlight utilization: tubular versus flat photobioreactors, Biotechnol. Bioeng., 57, 187, 10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J
Richmond, 2001, Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors, J. Biotechnol., 85, 259, 10.1016/S0168-1656(00)00353-9
Richmond, 2003, Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition, Biomol. Eng., 20, 229, 10.1016/S1389-0344(03)00060-1
Slegers, 2013, Scenario analysis of large scale algae production in tubular photobioreactors, Appl. Energy, 105, 395, 10.1016/j.apenergy.2012.12.068
Molina Grima, 2001, Tubular photobioreactor design for algal cultures, J. Biotechnol., 92, 113, 10.1016/S0168-1656(01)00353-4
Sánchez Mirón, 2000, Bubble-column and airlift photobioreactors for algal culture, AICHE J., 46, 1872, 10.1002/aic.690460915
Sánchez-Mirón, 2004, Mixing in bubble column and airlift reactors, Chem. Eng. Res. Des., 82, 1367, 10.1205/cerd.82.10.1367.46742
Anjos, 2013, Optimization of CO2 bio-mitigation by Chlorella vulgaris, Bioresour. Technol, 139, 149, 10.1016/j.biortech.2013.04.032
Duan, 2014, Bioreactor design for algal growth as a sustainable energy source, 27
Dasgupta, 2010, Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production, Int. J. Hydrog. Energy, 35, 10218, 10.1016/j.ijhydene.2010.06.029
Olivieri, 2014, Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications, J. Chem. Technol. Biotechnol., 89, 178, 10.1002/jctb.4218
Pruvost, 2016, Microalgae culture in building-integrated photobioreactors: biomass production modelling and energetic analysis, Chem. Eng. J., 284, 850, 10.1016/j.cej.2015.08.118
Kim, 2016, Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing, Bioprocess Biosyst. Eng., 39, 713, 10.1007/s00449-016-1552-6
Lv, 2010, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797, 10.1016/j.biortech.2010.03.120
Herrmann, 1997, Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR, plant, Cell Environ., 20, 359, 10.1046/j.1365-3040.1997.d01-77.x
Pessoa, 2012, Harmful effects of UV radiation in algae and aquatic macrophytes – a review, Emirates J. Food Agric., 24, 510, 10.9755/ejfa.v24i6.510526
Mussgnug, 2007, Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion, Plant Biotechnol. J., 5, 802, 10.1111/j.1467-7652.2007.00285.x
Pilát, 2013, Optical trapping of microalgae at 735–1064 nm: Photodamage assessment, J. Photochem. Photobiol. B Biol., 121, 27, 10.1016/j.jphotobiol.2013.02.006
Tredici, 2007, Mass production of microalgae: Photobioreactors, 178
Janssen, 2003, Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects, Biotechnol. Bioeng., 81, 193, 10.1002/bit.10468
Abu-Ghosh, 2016, Flashing light in microalgae biotechnology, Bioresour. Technol., 203, 357, 10.1016/j.biortech.2015.12.057
Barbosa, 2003, Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency, Biotechnol. Bioeng., 82, 170, 10.1002/bit.10563
Nwoba, 2019, Light management technologies for increasing algal photobioreactor efficiency, Algal Res., 39, 101433, 10.1016/j.algal.2019.101433
Strümpel, 2007, Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials, Sol. Energy Mater. Sol. Cells, 91, 238, 10.1016/j.solmat.2006.09.003
Richmond, 2004, Principles for attaining maximal microalgal productivity in photobioreactors: an overview, Hydrobiologia., 512, 33, 10.1023/B:HYDR.0000020365.06145.36
Karemore, 2015, 103
Cañedo, 2016, Considerations for Photobioreactor design and operation for mass cultivation of microalgae, 55
Guedes, 2012, Bioreactors for microalgae: A review of designs, features and applications, 1
Kumar, 2011, Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria, Bioresour. Technol., 102, 4945, 10.1016/j.biortech.2011.01.054
Degen, 2001, A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect, J. Biotechnol., 92, 89, 10.1016/S0168-1656(01)00350-9
Ugwu, 2003, Design of static mixers for inclined tubular photobioreactors, J. Appl. Phycol., 15, 217, 10.1023/A:1023837400050
Perner-Nochta, 2007, Simulations of light intensity variation in photobioreactors, J. Biotechnol., 131, 276, 10.1016/j.jbiotec.2007.05.024
Yang, 2016, Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor, Bioresour. Technol., 211, 519, 10.1016/j.biortech.2016.03.145
Wang, 2018, Effects of shear stress on microalgae – a review, Biotechnol. Adv., 36, 986, 10.1016/j.biotechadv.2018.03.001
Suh, 2003, Photobioreactor engineering: design and performance, Biotechnol. Bioprocess Eng., 8, 313, 10.1007/BF02949274
Doucha, 2005, Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7
C.M. Su, H.T. Hsueh, H.H. Chen, H. Chu, Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system., Chemosphere. 88 (2012) 706–811. https://doi.org/10.1016/j.chemosphere.2012.04.011.
Sobczuk, 2000, Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift Photobioreactors, Biotechnol. Bioeng., 67, 465, 10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9
Juneja, 2013, Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies., 6, 4607, 10.3390/en6094607
Torzillo, 2003, Biological constraints in algal biotechnology, Biotechnol. Bioprocess Eng., 8, 338, 10.1007/BF02949277
Richmond, 1993, A new tubular reactor for mass production of microalgae outdoors, J. Appl. Phycol., 5, 327, 10.1007/BF02186235
Morita, 2000, Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae, Biotechnol. Bioeng., 69, 693, 10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0
Fernández, 2001, Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance, Chem. Eng. Sci., 56, 2721, 10.1016/S0009-2509(00)00521-2
Fuentes, 2001, Biomass nutrient profiles of the microalga Nannochloropsis, J. Agric. Food Chem., 49, 2966, 10.1021/jf0010376
Ho, 2014, Perspectives on engineering strategies for improving biofuel production from microalgae — a critical review, Biotechnol. Adv., 32, 1448, 10.1016/j.biotechadv.2014.09.002
Cho, 2019, Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation, Bioresour. Technol., 281, 118, 10.1016/j.biortech.2019.02.063
Ran, 2019, Storage of starch and lipids in microalgae: biosynthesis and manipulation by nutrients, Bioresour. Technol., 291, 121894, 10.1016/j.biortech.2019.121894
Fu, 2016, A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients, Bioresour. Technol., 214, 629, 10.1016/j.biortech.2016.04.081
Pereira, 2013, Parametric sensitivity analysis for temperature control in outdoor photobioreactors, Bioresour. Technol., 144, 548, 10.1016/j.biortech.2013.07.009
Raven, 2003, Adaptation, acclimation and regulation in algal photosynthesis, 385, 10.1007/978-94-007-1038-2_17
Zheng, 2012, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour. Technol., 126, 24, 10.1016/j.biortech.2012.09.048
Mehlitz, 2009
Pereira, 2014, Hollow glass microspheres for temperature and irradiance control in photobioreactors, Bioresour. Technol., 158, 98, 10.1016/j.biortech.2014.01.143
Nwoba, 2020, Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation, Algal Res., 45, 101731, 10.1016/j.algal.2019.101731
Nwoba, 2019, Can solar control infrared blocking films be used to replace evaporative cooling for growth of Nannochloropsis sp . in plate photobioreactors ?, Algal Res, 39, 101441, 10.1016/j.algal.2019.101441
Fernández, 2010, Modelling and control issues of pH in tubular photobioreactors, IFAC Proc. Vol., 43, 186, 10.3182/20100707-3-BE-2012.0046
Benemann, 1987, Microalgae biotechnology, Trends Biotechnol., 5, 47, 10.1016/0167-7799(87)90037-0
Wiley, 2013, Microalgae cultivation using offshore membrane enclosures for growing algae (OMEGA), J. Sustain. Bioenergy Syst., 3, 18, 10.4236/jsbs.2013.31003
1998, An Automated Helical Photobioreactor Incorporating Cyanobacteria for Continuous Hydrogen Production, 431
Koller, 2015, Design of closed photobioreactors for algal cultivation, 133
Merchuk, 1986, Gas hold-up and liquid velocity in a two-dimensional air lift reactor, Chem. Eng. Sci., 41, 11, 10.1016/0009-2509(86)85192-2
Burlew, 1953
Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702
Hu, 1998, Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor, Appl. Microbiol. Biotechnol., 49, 655, 10.1007/s002530051228
Kumar, 2015, 35
Hafez, 2014, Biological Hydrogen Production: Light-Driven Processes, 322
Eriksen, 2008, The technology of microalgal culturing, Biotechnol. Lett., 30, 1525, 10.1007/s10529-008-9740-3
Mirón, 1999, Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, J. Biotechnol., 70, 249, 10.1016/S0168-1656(99)00079-6
Grima, 1994, Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture, Appl. Microbiol. Biotechnol., 41, 23, 10.1007/BF00166076
Meireles, 2002, On-line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system, Biotechnol. Prog., 18, 1387, 10.1021/bp020283u
Doran, 2013
Chiu, 2009, The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal, Eng. Life Sci., 9, 254, 10.1002/elsc.200800113
Chisti, 1989
Iqbal, 1993, A flat-sided photobioreactor for culturing microalgae, Aquac. Eng., 12, 183, 10.1016/0144-8609(93)90010-9
Tredici, 1991, A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria, Bioresour. Technol., 38, 153, 10.1016/0960-8524(91)90147-C
Tredici, 1992, From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms, J. Appl. Phycol., 4, 221, 10.1007/BF02161208
Pulz, 1995, Light energy supply in plate type and ligh diffusing optical fiber bioreactors, J. Appl. Phycol., 7, 145, 10.1007/BF00693061
Hu, 1996, Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor, J. Appl. Phycol., 8, 139, 10.1007/BF02186317
Hu, 1996, A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs, Biotechnol. Bioeng., 51, 51, 10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#
Hu, 1996, Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities, J. Phycol., 32, 1066, 10.1111/j.0022-3646.1996.01066.x
Hu, 1998, Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (cyanobacteria), Eur. J. Phycol., 33, 165, 10.1080/09670269810001736663
Gilbert, 2011, Hydrogen production using Rhodobacter sphaeroides (O.U. 001) in a flat panel rocking photobioreactor, Int. J. Hydrogen Energy, 36, 3434, 10.1016/j.ijhydene.2010.12.012
Vogel, 2017, Culture of Spirogyra sp . in a flat - panel airlift photobioreactor, 3, Biotech
Huang, 2015, Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics, Bioresour. Technol., 182, 151, 10.1016/j.biortech.2015.01.067
Huang, 2014, Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient, Bioresour. Technol., 159, 8, 10.1016/j.biortech.2014.01.134
Eze, 2017, A novel flat plate air-lift photobioreactor with inclined reflective broth circulation guide for improved biomass and lipid productivity by Desmodesmus subspicatus LC172266, J. Appl. Phycol., 29, 2745, 10.1007/s10811-017-1153-z
Sato, 2006, Invention of outdoor closed type photobioreactor for microalgae, Energy Convers. Manag., 47, 791, 10.1016/j.enconman.2005.06.010
Lee, 1995, Design and performance of an alpha-type tubular photobioreactor for mass cultivation of microalgae, J. Appl. Phycol., 7, 47, 10.1007/BF00003549
Bosma, 2014, Design and construction of the microalgal pilot facility AlgaePARC, Algal Res., 6, 160, 10.1016/j.algal.2014.10.006
de Vree, 2016, Turbidostat operation of outdoor pilot-scale photobioreactors, Algal Res., 18, 198, 10.1016/j.algal.2016.06.006
Watanabe, 1995, Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis, Energy Convers. Manag., 36, 721, 10.1016/0196-8904(95)00106-N
Travieso, 2001, A helical tubular photobioreactor producing spirulina in a semicontinuous mode, Int. Biodeterior. Biodegradation, 47, 151, 10.1016/S0964-8305(01)00043-9
Carlozzi, 2005, Growth characteristics of Arthrospira platensis cultured inside a new close-coil photobioreactor incorporating a mandrel to control culture temperature, Biotechnol. Bioeng., 90, 675, 10.1002/bit.20425
Tanaka, 2002, Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers, Appl. Microbiol. Biotechnol, 58, 600, 10.1007/s00253-002-0940-9
Ugwu, 2005, Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass, Biotechnol. Lett., 27, 75, 10.1007/s10529-004-6931-4
Ugwu, 2005, Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers, Process Biochem., 40, 3406, 10.1016/j.procbio.2005.01.023
Zhang, 2013, Study of hydrodynamic characteristics in tubular photobioreactors, Bioprocess Biosyst. Eng., 36, 143, 10.1007/s00449-012-0769-2
Cheng, 2016, Computational fluid dynamics simulation of mixing characteristics and light regime in tubular photobioreactors with novel static mixers, J. Chem. Technol. Biotechnol., 91, 327, 10.1002/jctb.4560
Yan, 2018, Mixing characteristics, cell trajectories, pressure loss and shear stress of tubular photobioreactor with inserted self-rotating helical rotors, J. Chem. Technol. Biotechnol., 93, 1261, 10.1002/jctb.5484
Qin, 2019, Influence of successive and independent arrangement of Kenics mixer units on light / dark cycle and energy consumption in a tubular microalgae photobioreactor, Algal Res., 37, 17, 10.1016/j.algal.2018.09.020
Chang, 2016, Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon, Bioresour. Technol., 206, 231, 10.1016/j.biortech.2016.01.087
Yang, 2017, Experimental study on microalgae cultivation in novel photobioreactor of concentric double tubes with aeration pores along tube length direction, Int. J. Green Energy., 14, 1269, 10.1080/15435075.2017.1402772
Öncel, 2016, Façade integrated photobioreactors for building energy efficiency, 237
Lam, 2014, Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production, Energy Convers. Manag., 88, 399, 10.1016/j.enconman.2014.08.063
Zittelli, 2003, Mass cultivation of Nannochloropsis sp. in annular reactors, J. Appl. Phycol, 15, 107, 10.1023/A:1023830707022
Loubiere, 2011, Investigations in an external-loop airlift photobioreactor with annular light chambers and swirling flow, Chem. Eng. Res. Des., 89, 164, 10.1016/j.cherd.2010.06.001
Miller, 1964, Hydromechanical method to increase efficiency of algal photosynthesis, Ind. Eng. Chem. Process. Des. Dev., 3, 134, 10.1021/i260010a008
Kliphuis, 2010, Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor, Biotechnol. Prog., 26, 687, 10.1002/btpr.379
Pruvost, 2006, Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor, Chem. Eng. Sci., 61, 4476, 10.1016/j.ces.2006.02.027
Ifrim, 2013, Multivariable feedback linearizing control of Chlamydomonas reinhardtii photoautotrophic growth process in a torus photobioreactor, Chem. Eng. J., 218, 191, 10.1016/j.cej.2012.11.133
Pruvost, 2004, Numerical investigation of bend and torus flows, part I : effect of swirl motion on flow structure in U-bend, Chem. Eng. Sci., 59, 3345, 10.1016/j.ces.2004.03.040
D. Özçimen, M.Ö. Gülyurt, B. İnan, Algal Biorefinery for Biodiesel Production, in: Z. Fang (Ed.), Feed. Prod. Appl., IntechOpen, 2012: 25–57. https://doi.org/https://doi.org/10.5772/52679.
T. Matsunaga, H. Takeyama, H. Sudo, N. Oyama, S. Ariura, H. Takano, M. Hirano, J.G. Burgess, K. Sode, N. Nakamura, Glutamate production from CO2 by Marine Cyanobacterium Synechococcus sp. - Using a Novel Biosolar Reactor Employing Light-Diffusing Optical Fibers, Appl. Biochem. Biotechnol. 28–29 (1991) 157–167. https://doi.org/10.1007/BF02922597.
Ogbonna, 1996, A novel internally illuminated stirred tank photobioreactor for large- scale cultivation of photosynthetic cells, J. Ferment. Bioeng., 82, 61, 10.1016/0922-338X(96)89456-6
Ogbonna, 1999, An integrated solar and artificial light system for illumination of photobioreactors, J. Biotechnol., 70, 289, 10.1016/S0168-1656(99)00081-4
Suh, 2003, A light distribution model for an internally radiating photobioreactor, Biotechnol. Bioeng., 82, 180, 10.1002/bit.10558
Ponte, 2016, Advances for opaque PBR internally illuminated for fiber optic for microalgae production, Nat. Sci., 3, 1
Mori, 1986
Xue, 2013, A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae, Bioresour. Technol., 138, 141, 10.1016/j.biortech.2013.03.156
Hincapie, 2015, Design, construction, and validation of an internally lit air-lift Photobioreactor for growing algae, Front. Energy Res., 2, 1, 10.3389/fenrg.2014.00065
Xu, 2009, Microalgal bioreactors: challenges and opportunities, Eng. Life Sci., 9, 178, 10.1002/elsc.200800111
Sun, 2016, Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor, Bioresour. Technol., 207, 31, 10.1016/j.biortech.2016.01.136
Sun, 2016, Integrating planar waveguides doped with light scattering nanoparticles into a flat-plate photobioreactor to improve light distribution and microalgae growth, Bioresour. Technol., 220, 215, 10.1016/j.biortech.2016.08.063
Jung, 2014, Stacked optical waveguide photobioreactor for high density algal cultures, Bioresour. Technol., 171, 495, 10.1016/j.biortech.2014.08.093
Ahsan, 2015, Integrated hollow fiber membranes for gas delivery into optical waveguide based photobioreactors, Bioresour. Technol., 192, 845, 10.1016/j.biortech.2015.06.028
Ahsan, 2014, Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation, Opt. Express, 22, A1526, 10.1364/OE.22.0A1526
Jain, 2015, Optimal intensity and biomass density for biofuel production in a thin-light-path Photobioreactor, Environ. Sci. Technol., 49, 6327, 10.1021/es5052777
El-Shishtawy, 1997, Biological H2 production using a novel light-induced and diffused photoreactor, Biotechnol. Tech., 11, 403, 10.1023/A:1018464622224
Pierobon, 2016, Breathable waveguides for combined light and CO2 delivery to microalgae, Bioresour. Technol., 209, 391, 10.1016/j.biortech.2016.03.016
Yam, 2005, Innovative advances in LED technology, Microelectron. J., 36, 129, 10.1016/j.mejo.2004.11.008
Schulze, 2014, Light emitting diodes (LEDs) applied to microalgal production, Trends Biotechnol., 32, 422, 10.1016/j.tibtech.2014.06.001
Glemser, 2016, Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives, Appl. Microbiol. Biotechnol., 100, 1077, 10.1007/s00253-015-7144-6
Carvalho, 2011, Light requirements in microalgal photobioreactors: an overview of biophotonic aspects, Appl. Microbiol. Biotechnol., 89, 1275, 10.1007/s00253-010-3047-8
Lee, 1995, Light emitting diode-based algal photobioreactor with external gas exchange, J. Ferment. Bioeng., 79, 257, 10.1016/0922-338X(95)90613-5
Tamburic, 2011, Design of a novel flat-plate photobioreactor system for green algal hydrogen production, Int. J. Hydrog. Energy, 36, 6578, 10.1016/j.ijhydene.2011.02.091
Rosales, 2017, Modeling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors, Bioresour. Technol., 245, 250, 10.1016/j.biortech.2017.08.161
Hu, 2017, A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement, Energy Convers. Manag., 558, 10.1016/j.enconman.2016.11.008
Yim, 2016, Internally illuminated photobioreactor using a novel type of light-emitting diode (LED) bar for cultivation of Arthrospira platensis, Biotechnol. Bioprocess Eng., 21, 767, 10.1007/s12257-016-0428-6
Malapascua, 2019, Photosynthesis and growth kinetics of chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor, Photosynthetica., 57, 103, 10.32615/ps.2019.031
Hang Ho, 2018, Maximization of astaxanthin production from green microalga Haematococcus pluvialis using internally-illuminated photobioreactor, Adv. Biosci. Bioeng., 6, 10
Kalontarov, 2013, In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity, RSC Adv., 3, 13203, 10.1039/c3ra40454d
Fan, 2007, Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor, Chem. Eng. Technol., 30, 1094, 10.1002/ceat.200700141
Carvalho, 2001, Transfer on carbon dioxide within cultures of micro algae: plain bubbling versus hollow-fibre modules, Biotechnol. Prog., 17, 265, 10.1021/bp000157v
Cheng, 2006, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep. Purif. Technol., 50, 324, 10.1016/j.seppur.2005.12.006
Fan, 2008, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, J. Memb. Sci., 325, 336, 10.1016/j.memsci.2008.07.044
Y. Sano, A. Horibe, N. Haruki, Y. Okino, Microalgal Culture for Chlorella sp . using a Hollow Fiber Membrane Module, J. Membra. Sci .Technol . 6 (2016) 1–6. https://doi.org/10.4172/2155-9589.1000147.
Mantzorou, 2019, Microalgal biofilms: a further step over current microalgal cultivation techniques, Sci. Total Environ., 651, 3187, 10.1016/j.scitotenv.2018.09.355
Johnson, 2010, Development of an attached microalgal growth system for biofuel production, Appl. Microbiol. Biotechnol., 85, 525, 10.1007/s00253-009-2133-2
Christenson, 2012, Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products, Biotechnol. Bioeng., 109, 1674, 10.1002/bit.24451
Liu, 2013, Attached cultivation technology of microalgae for efficient biomass feedstock production, Bioresour. Technol., 127, 216, 10.1016/j.biortech.2012.09.100
Cheng, 2013, The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation, Bioresour. Technol., 138, 95, 10.1016/j.biortech.2013.03.150
Gross, 2013
Genin, 2014, Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content, Bioresour. Technol., 155, 136, 10.1016/j.biortech.2013.12.060
Gao, 2015, A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent, Bioresour. Technol., 179, 8, 10.1016/j.biortech.2014.11.108
Schnurr, 2013, Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation, Bioresour. Technol., 136, 337, 10.1016/j.biortech.2013.03.036
Boelee, 2014, The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing, J. Appl. Phycol., 26, 1439, 10.1007/s10811-013-0178-1
Lee, 2014, Higher biomass productivity of microalgae in an attached growth system, using wastewater, J. Microbiol. Biotechnol., 24, 1566, 10.4014/jmb.1406.06057
Podola, 2016, Porous substrate bioreactors - a paradigm shift in microalgal biotechnology?, Trends Biotechnol., 35, 122
Katarzyna, 2015, Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs, Renew. Sust. Energ. Rev., 42, 1418, 10.1016/j.rser.2014.11.029
Kondo, 2006, Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment, Int. J. Hydrog. Energy, 31, 1522, 10.1016/j.ijhydene.2006.06.019
Xu, 2017, Attached microalgae cultivation and nutrients removal in a novel capillary-driven photo-biofilm reactor, Algal Res., 27, 198, 10.1016/j.algal.2017.08.028
Pruvost, 2017, Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm ©) based on process intensification principles, Algal Res., 21, 120, 10.1016/j.algal.2016.10.012
Doucha, 1995, Novel outdoor thin-layer high density microalgal culture system : productivity and operational parameters, Arch. Hydrobiol. Suppl. Algol. Stud., 76, 129
J. Doucha, High Density Outdoor Microalgal Culture, in: R. Bajpai, Z. Prokop, A., M. (Eds.), Algal Biorefineries Vol.1 Cultiv. Cells Prod., Springer, Dordrecht Heilberg, London New York, 2014:147–173. https://doi.org/10.13140/2.1.1147.0400.
Borowitzka, 1999, Commercial production of microalgae: ponds, tanks, tubes and fermenters, J. Biotechnol., 70, 313, 10.1016/S0168-1656(99)00083-8
Doucha, 2005, Utilization of flue gas for cultivation of microalgae chlorella sp. in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7
Huntley, 2006, CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal, Mitig. Adap. Strat. Global Chan., 6, 573
Mottahedeh
Velea, 2014, New Photobioreactor Design for Enhancing the photosynthetic productivity of chlorella homosphaera culture, Rev. Chim., 2, 1
de Jesus, 2015, Influence of impeller type on hydrodynamics and gas-liquid mass-transfer in stirred airlift bioreactor, AICHE J., 61, 3159, 10.1002/aic.14871
Deprá, 2019, A new hybrid photobioreactor design for microalgae culture, Chem. Eng. Res. Des., 144, 1, 10.1016/j.cherd.2019.01.023
Hashemi, 2020, Beta-carotene production within Dunaliella salina cells under salt stress condition in an indoor hybrid helical-tubular photobioreactor, Can. J. Chem. Eng., 98, 69, 10.1002/cjce.23577
Shimamura, 2012, Development of Botryococcus seed culture system for future mass culture, Procedia Environ. Sci., 15, 80, 10.1016/j.proenv.2012.05.013
Sato, 2010, Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect, Energy Convers. Manag., 51, 1196, 10.1016/j.enconman.2009.12.030
Watanabe, 1997, Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Manag, 38, S499, 10.1016/S0196-8904(96)00317-2
M. Morita, Y. Watanabe, T. Okawa, H. Saiki, Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions., Biotechnol. Bioeng. 74 (2001) 136–44. http://www.ncbi.nlm.nih.gov/pubmed/11370002 (accessed June 12, 2018).
SOLEY, Pyramid Photobioreactor - SOLEY BIOTECHNOLOGY INSTITUTE,. http://www.soleybio.com/photobioreactor.html (accessed November 14, 2018).
Kumar, 2010, A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach, J. Chem. Technol. Biotechnol., 85, 387, 10.1002/jctb.2332
Hahne, 2014, Disposable algae cultivation for high-value products using all around LED-illumination directly on the bags, J. Algal Biomass Util., 5, 66
Abomohra, 2014, Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel, Biomass Bioenergy, 64, 237, 10.1016/j.biombioe.2014.03.049
Sierra, 2008, Characterization of a flat plate photobioreactor for the production of microalgae, Chem. Eng. J., 138, 136, 10.1016/j.cej.2007.06.004
Pham, 2017, Development of an X-shape airlift photobioreactor for increasing algal biomass and biodiesel production, Bioresour. Technol., 239, 211, 10.1016/j.biortech.2017.05.030
Yan, 2016, A novel low-cost thin-film flat plate photobioreactor for microalgae cultivation, Biotechnol. Bioprocess Eng., 21, 103, 10.1007/s12257-015-0327-2
Lehmann, 2013, Wave-mixed and orbitally shaken single-use photobioreactors for diatom algae propagation, Chemie-Ingenieur-Technik., 85, 197, 10.1002/cite.201200137
Schlagermann, 2012, Composition of algal oil and its potential as biofuel, J. Combust., 2012, 10.1155/2012/285185
Elrayies, 2018, Microalgae: prospects for greener future buildings, Renew. Sust. Energ. Rev., 81, 1175, 10.1016/j.rser.2017.08.032
Masojídek, 2003, A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance, J. Appl. Phycol., 15, 239, 10.1023/A:1023849117102
Heining, 2014, Internal illumination of photobioreactors via wireless light emitters: a proof of concept, J. Appl. Phycol., 27, 59, 10.1007/s10811-014-0290-x
Camacho, 2000, Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum, Process Biochem., 35, 1045, 10.1016/S0032-9592(00)00138-2
Zhang, 2016, Advances in airlift reactors: modified design and optimization of operation conditions, Rev. Chem. Eng., 33, 163, 10.1515/revce-2016-0005
Huntley, 2015, Demonstrated large-scale production of marine microalgae for fuels and feed, ALGAL, 24
Iñiguez, 2018, Recyclability of four types of plastics exposed to UV irradiation in a marine environment, Waste Manag., 79, 339, 10.1016/j.wasman.2018.08.006