Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting
Tóm tắt
Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.
Tài liệu tham khảo
A.R. Abate, C.H. Chen, J.J. Agresti, D.A. Weitz, Lab Chip 9, 2628–2631 (2009)
A.R. Abate, J.J. Agresti, D.A. Weitz, Appl. Phys. Lett. 96, 203509 (2010)
K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz, Appl. Phys. Lett. 88, 024104 (2006)
S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364–366 (2003)
L. Baraban, F. Bertholle, M.L.M. Salverda, N. Bremond, P. Panizza, J. Baudry, J. de Visser, J. Bibette, Lab Chip 11, 4057–4062 (2011)
J.C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths, Lab Chip 9, 1850–1858 (2009)
C.N. Baroud, J.P. Delville, F. Gallaire, R. Wunenburger, Phys. Rev. E 75, 046302 (2007)
J.Q. Boedicker, L. Li, T.R. Kline, R.F. Ismagilov, Lab Chip 8, 1265–1272 (2008)
E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels, Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009)
M. Chabert, J.L. Viovy, Proc. Natl. Acad. Sci. U. S. A. 105, 3191–3196 (2008)
P. Chen, X. Feng, W. Du, B.F. Liu, Front. Biosci. 13, 2464–2483 (2008)
P. Chen, X. Feng, R. Hu, J. Sun, W. Du, B.-F. Liu, Anal. Chim. Acta 663, 1–6 (2010a)
P. Chen, X. Feng, J. Sun, Y. Wang, W. Du, B.-F. Liu, Lab Chip 10, 1472–1475 (2010b)
C.H. Choi, J.H. Jung, Y.W. Rhee, D.P. Kim, S.E. Shim, C.S. Lee, Biomed. Microdevices 9, 855–862 (2007)
J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Chem. Biol. 15, 427–437 (2008)
D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)
J.F. Edd, D. Di Carlo, K.J. Humphry, S. Koster, D. Irimia, D.A. Weitz, M. Toner, Lab Chip 8, 1262–1264 (2008)
L.M. Fidalgo, G. Whyte, D. Bratton, C.F. Kaminski, C. Abell, W.T.S. Huck, Angew. Chem. Int. Ed. 47, 2042–2045 (2008)
T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth, Lab Chip 9, 2625–2627 (2009)
A.L. Givan, Flow Cytometry First Principles, 2nd edn. (Wiley-Liss, Inc, New York, 2001), pp. 162–163
M.Y. He, J.S. Edgar, G.D.M. Jeffries, R.M. Lorenz, J.P. Shelby, D.T. Chiu, Anal. Chem. 77, 1539–1544 (2005)
S. Ishii, K. Tago, K. Senoo, Appl. Microbiol. Biotechnol. 86, 1281–1292 (2010)
S. Koster, F.E. Angile, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110–1115 (2008)
D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez, D.A. Weitz, Angew. Chem. Int. Ed. 45, 2556–2560 (2006)
R.M. Lorenz, J.S. Edgar, G.D.M. Jeffries, D.T. Chiu, Anal. Chem. 78, 6433–6439 (2006)
D. Pappas, K. Wang, Anal. Chim. Acta 601, 26–35 (2007)
J.U. Shim, L.F. Olguin, G. Whyte, D. Scott, A. Babtie, C. Abell, W.T.S. Huck, F. Hollfelder, J. Am, Chem. Soc. 131, 15251–15256 (2009)
H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336–7356 (2006)
J. Sun, P. Chen, X. Feng, W. Du, B.-F. Liu, Biosens. Bioelectron. 26, 3413–3419 (2011)
W. Tan, S. Adv, Mater. 19, 2696–2701 (2007)
S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198–220 (2008)
A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Angew. Chem. Int. Ed. 49, 5846–5868 (2010)
T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Phys. Rev. Lett. 86, 4163–4166 (2001)
Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–184 (1998)
C.-G. Yang, Z.-R. Xu, J.-H. Wang, Trends Anal. Chem. 29, 141–157 (2010)
H. Yin, D. Marshall, Curr. Opin. Biotech. 23, 110–119 (2012)
L.F. Yu, M.C.W. Chen, K.C. Cheung, Lab Chip 10, 2424–2432 (2010)
Y.H. Zhan, J. Wang, N. Bao, C. Lu, Anal. Chem. 81, 2027–2031 (2009)
K. Zhang, Q. Liang, S. Ma, X. Mu, P. Hu, Y. Wang, G. Luo, Lab Chip 9, 2992–2999 (2009)