Encapsulation of silicotungstic acid into chromium (III) terephthalate metal–organic framework for high proton conductivity membranes

Research on Chemical Intermediates - Tập 47 - Trang 61-76 - 2021
Vo Minh Huy Tran1, Kondo-Francois Aguey-Zinsou1
1MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, Australia

Tóm tắt

Heteropoly acids have attracted great attention as potential solid-state proton-conducting materials owing to their high proton conductivity of 10–2 S cm−1 at room temperature. However, the proton conductivity can be significantly reduced under operating conditions due to the leaching of water molecules out of the acid Keggin structure. In the present study, silicotungstic acid (SiWA) was encapsulated in the mesoporous structure of the chromium (III) terephthalate metal–organic framework (MIL-101) in an attempt to prevent water loss and preserve proton conductivity. This hybrid material was then shaped into a membrane with the aid of polyvinyl alcohol (PVA). This approach of SiWA encapsulation with PVA addition to form a membrane proved to be successful as the proton conductivity of the resulting membranes was found to be of 2.4 × 10–2 S cm−1 at 25 °C and 25% RH. Under low levels of hydration, when the membrane was dried at 80 °C, the proton conductivity still remained high (1.9 × 10–2 S cm−1). This improved proton conductivity is believed to be the result of the continuous channels for facile proton transport created through the immobilisation of the heteropoly acid within the MIL-101 framework.

Tài liệu tham khảo

Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc. 143, 1254 (1996)

S.-Y. Lee, T. Yasuda, M. Watanabe, J. Power Sour. 195, 5909 (2010)

F. Jiang, H. Pu, W. Meyer, Y. Guan, D. Wan, Electrochim. Acta 53, 4495 (2008)

Y. Shen, P. Heo, C. Pak, H. Chang, T. Hibino, Electrochem. Commun. 24, 82 (2012)

U. Mioč, M. Todorović, M. Davidović, P. Colomban, I. Holclajtner-Antunović, Solid State Ion. 176, 3005 (2005)

U.B. Mioč, S. Stojadinović, Z. Nedić, Materials 3, 110 (2010)

B. Zhang, Y. Cao, Z. Li, H. Wu, Y. Yin, L. Cao, X. He, Z. Jiang, Electrochim. Acta 240, 186 (2017)

S. Lu, D. Wang, S.P. Jiang, Y. Xiang, J. Lu, J. Zeng, Adv. Mater. 22, 971 (2010)

S.S. Nagarkar, S.M. Unni, A. Sharma, S. Kurungot, S.K. Ghosh, Angew Chem. Int. Ed. 53, 2638 (2014)

Y. Izumi, Res. Chem. Intermed. 24, 461 (1998)

B. Le Ouay, M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa, T. Uemura, J. Am. Chem. Soc. 138, 10088 (2016)

Z. Li, G. He, B. Zhang, Y. Cao, H. Wu, Z. Jiang, Z. Tiantian, A.C.S. Appl, Mater. Interf. 6, 9799 (2014)

Y.-S. Wei, X.-P. Hu, Z. Han, X.-Y. Dong, S.-Q. Zang, T.C. Mak, J. Am. Chem. Soc. 139, 3505 (2017)

D. Wang, Z. Li, Res. Chem. Intermed. 43, 5169 (2017)

G. Zhu, S. Wang, Z. Yu, L. Zhang, D. Wang, B. Pang, W. Sun, Res. Chem. Intermed. 45, 3777 (2019)

E. Rafiee, M. Kahrizi, M. Joshaghani, P. Ghaderi-Sheikhi Abadi, Res. Chem. Intermed. 42, 5573 (2016)

D. Ozer, O. Icten, N. Altuntas-Oztas, B. Zumreoglu-Karan, Res. Chem. Intermed. 46, 909 (2020)

E. Rafiee, N. Nobakht, L. Behbood, Res. Chem. Intermed. 43, 951 (2017)

H.-Y. Zhang, X. Chen, L.-J. Yao, S.-Z. Chen, X.-J. Sun, Res. Chem. Intermed. 46, 521 (2020)

A.E.R.S. Khder, H.M.A. Hassan, M.S. El-Shall, Appl. Catal. 487, 110 (2014)

V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova, V.P. Fedin, J. Am. Chem. Soc. 134, 15640 (2012)

X. Hu, Y. Lu, F. Dai, C. Liu, Y. Liu, Microporous Mesoporous Mater. 170, 36 (2013)

L.H. Wee, F. Bonino, C. Lamberti, S. Bordiga, J.A. Martens, Green Chem. 16, 1351 (2014)

M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, J. Biomed. Mater. Res. 100, 1451 (2012)

Y. Wu, C. Wu, Y. Li, T. Xu, Y. Fu, J. Membr. Sci. 350, 322 (2010)

C. Wu, Y. Wu, J. Luo, T. Xu, Y. Fu, J. Membr. Sci. 356, 96 (2010)

S. Moulay, Polym-Plast Technol. 54, 1289 (2015)

A. Anis, A. Banthia, S. Bandyopadhyay, J. Mater. Eng. Perform. 17, 772 (2008)

A. Babad-Zakhryapin, Bull. Acad. Sci. USSR, Chem. Sci. 12, 197 (1963)

B. Briscoe, P. Luckham, S. Zhu, Polymer 41, 3851 (2000)

L. Bromberg, Y. Diao, H. Wu, S.A. Speakman, T.A. Hatton, Chem. Mater. 24, 1664 (2012)

M. Krumova, D. Lopez, R. Benavente, C. Mijangos, J. Perena, Polymer 41, 9265 (2000)

L. Lim, L.S. Wan, Drug Dev. Ind. Pharm. 20, 1007 (1994)

L. Ma, L. Xu, H. Jiang, X. Yuan, RSC Adv. 9, 5692 (2019)

S.C. Tan, H.K. Lee, Microchim. Acta 186, 165 (2019)

P. Staiti, J. New Mater. Electrochem. Syst. 4, 101 (2001)

T. Wang, J. Wang, C. Zhang, Z. Yang, X. Dai, M. Cheng, X. Hou, Analyst 140, 5308 (2015)

Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, Y. He, Sci. Rep. 3, 1 (2013)

S.A. El-Hakam, S.E. Samra, S.M. El-Dafrawy, A.A. Ibrahim, R.S. Salama, A.I. Ahmed, RSC Adv. 8, 20517 (2018)

ŞS. Bayazit, S.T. Danalıoğlu, M.A. Salam, Ö.K. Kuyumcu, Environ. Sci. Pollut. R. 24, 25452 (2017)

J. Albert, D. Lüders, A. Bösmann, D.M. Guldi, P. Wasserscheid, Green Chem. 16, 226 (2014)

A. Martínez-Felipe, C. Moliner-Estopiñán, C.T. Imrie, A. Ribes-Greus, J. Appl. Polym. Sci. 124, 1000 (2012)

H. Gao, Q. Tian, K.K. Lian, ECS Trans. 28, 77 (2010)

X. Lai, Y. Liu, G. Yang, S. Liu, Z. Shi, Y. Lu, F. Luo, S. Liu, J. Mater. Chem. A 5, 9611 (2017)

F. Wang, C. Liang, J. Tang, F. Zhang, F. Qu, New J. Chem. 44, 1912 (2020)

A.W. Sakti, Y. Nishimura, H. Nakai, Wilet Interdiscip. Rev. Comput. Mol. Sci. 10, e1419 (2020)

L. Degirmenci, N. Oktar, G. Dogu, Fuel Process. Technol. 91, 737 (2010)

D.I. Kolokolov, M.S. Kazantsev, M.V. Luzgin, H. Jobic, A.G. Stepanov, J. Phys. Chem. C 118, 30023 (2014)

Z. Luo, Z. Chang, Y. Zhang, Z. Liu, J. Li, Int. J. Hydrogen Energy 35, 3120 (2010)

P.W. Atkins, General chemistry. International student edition, (Scientific American Books WH Freeman & Co, New York, 1989)

H. Gao, A. Virya, K. Lian, J. Mater. Chem. A 3, 21511 (2015)

K. Lian, Q. Tian, Electrochem. Commun. 12, 517 (2010)

S.B. Aziz, R.T. Abdulwahid, M.H. Hamsan, M.A. Brza, R.M. Abdullah, M.F. Kadir, S.K. Muzakir, Molecules 24, 3508 (2019)

N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95, 197 (2018)