Encapsulating MoS2-nanoflowers conjugated with chitosan oligosaccharide into electrospun nanofibrous scaffolds for photothermal inactivation of bacteria

Qilan Xu1, Li Zhang1, Yuhui Liu2, Ling Cai3, Liuzhu Zhou1, Huijun Jiang4, Jin Chen1,3,4,5
1Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
2State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Engineering, East China University of Technology, Nanchang, China
3School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
4School of Pharmacy, Nanjing Medical University, Nanjing, China
5Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China

Tóm tắt

The bacterial inactivation using near-infrared (NIR) light irradiation with spatiotemporal control is advantageous to deal with the emerging microbial infection and the drug resistance in the environment and health-care facilities. Here, nanoflower-like MoS2 prepared by electrolysis synthesis was functionalized with α-lipoic acid and chitosan oligosaccharide (MoS2-LA-COS) resulting in a highly biocompatible, well dispersive, and NIR photo-responsive composite. The produced nanocomposite of MoS2-LA-COS retained the nanoflower-like morphological feature, of which the hexagonal structure (2H phase) was similar with that of MoS2 according to the X-ray diffraction measurement. Moreover, the produced MoS2-LA-COS was efficiently loaded into the electrospun nanofiber membranes (ENFs) endowing the fibrous scaffold with outstanding photothermal performance. The antibacterial studies indicated a superior bactericidal effect of the formed membranes under NIR irradiation towards the inactivation of model G− Staphylococcus aureus and G+ Escherichia coli strains, which was originated from the uniform distribution of MoS2-LA-COS on the fibrous scaffold. The produced MoS2-LA-COS nanofibrous membranes of good water vapor transmission rate and improved photothermal performance possess enormous potential for the development as well as the disposal of personal protective equipment such as medical masks.

Tài liệu tham khảo

Huemer, M., Mairpady Shambat, S., Brugger, S.D., Zinkernagel, A.S.: Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO. Rep. 21, e51034 (2020) McEwen, S.A., Collignon, P.J.: Antimicrobial resistance: a one health perspective. Microb. Spectr. 6 (2018). https://doi.org/10.1128/microbiolspec.ARBA-0009-2017 Holmes, A.H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., Piddock, L.J.V.: Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016) An, X., Erramilli, S., Reinhard, B.M.: Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. Nanoscale 13, 3374–3411 (2021) Chen, Y., Gao, Y., Chen, Y., Liu, L., Mo, A., Peng, Q.: Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release. 328, 251–262 (2020) Ashrafi, M., Bayat, M., Mortazavi, P., Hashemi, S.J., Meimandipour, A.: Antimicrobial effect of chitosan–silver–copper nanocomposite on candida albicans. J. Nanostructure. Chem. 10, 87–95 (2020) González-Ballesteros, N., Rodríguez-Argüelles, M.C., Lastra-Valdor, M., González-Mediero, G., Rey-Cao, S., Grimaldi, M., Cavazza, A., Bigi, F.: Synthesis of silver and gold nanoparticles by sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. J. Nanostructure. Chem. 10, 317–330 (2020) Sun, J., Song, L., Fan, Y., Tian, L., Luan, S., Niu, S., Ren, L., Ming, W., Zhao, J.: Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Appl. Mater. Inter. 11, 26581–26589 (2019) Li, M., Liang, Y., Liang, Y., Pan, G., Guo, B.: Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chem. Eng. J. 427, 132039 (2022) Tan, L., Li, J., Liu, X., Cui, Z., Yang, X., Zhu, S., Li, Z., Yuan, X., Zheng, Y., Yeung, K.W.K., Pan, H., Wang, X., Wu, S.: Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv. Mater. 30, e1801808 (2018) Xu, Z., Deng, B., Wang, X., Yu, J., Xu, Z., Liu, P., Liu, C., Cai, Y., Wang, F., Zong, R., Chen, Z., Xing, H., Chen, G.: Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J. Nanobiotechnol. 19, 404 (2021) Wei, T., Yu, Q.: Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthc. Mater. 8, e1801381 (2019) Xie, X., Mao, C., Liu, X., Tan, L., Cui, Z., Yang, X., Zhu, S., Li, Z., Yuan, X., Zheng, Y., Yeung, K.W.K., Chu, P.K., Wu, S.: Tuning the bandgap of photo-sensitive polydopamine/Ag(3)PO(4)/graphene oxide coating for rapid, noninvasive disinfection of implants. ACS. Cent. Sci. 4, 724–738 (2018) Aksoy, İ, Küçükkeçeci, H., Sevgi, F., Metin, Ö., Hatay Patir, I.: Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS. Appl. Mater. Inter. 12, 26822–26831 (2020) Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., Mishra, M.: Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure. Chem. 8, 123–137 (2018) Zhong, H., Zhu, Z., Lin, J., Cheung, C.F., Lu, V.L., Yan, F., Chan, C.-Y., Li, G.: Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS. Nano. 14, 6213–6221 (2020) Yougbaré, S., Mutalik, C., Krisnawati, D.I., Kristanto, H., Jazidie, A., Nuh, M., Cheng, T.-M., Kuo, T.-R.: Nanomaterials for the photothermal killing of bacteria. Nanomater. (Basel). 10, 1123 (2020) Kennedy, J., Blair, I.S., McDowell, D.A., Bolton, D.J.: An investigation of the thermal inactivation of staphylococcus aureus and the potential for increased thermotolerance as a result of chilled storage. J. Appl. Microb. 99, 1229–1235 (2005) Li, M., Li, L., Su, K., Liu, X., Zhang, T., Liang, Y., Jing, D., Yang, X., Zheng, D., Cui, Z., Li, Z., Zhu, S., Yeung, K.W.K., Zheng, Y., Wang, X., Wu, S.: Highly effective and noninvasive near-infrared eradication of a staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv. Sci. (Weinh). 6, 1900599 (2019) Hao, J., Song, G., Liu, T., Yi, X., Yang, K., Cheng, L., Liu, Z.: In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS (M = Mo, W, Ti). Nanosheets. Adv. Sci. (Weinh). 4, 1600160 (2017) Oudeng, G., Au, M., Shi, J., Wen, C., Yang, M.: One-step in situ detection of miRNA-21 expression in single cancer cells based on biofunctionalized MoS2 nanosheets. ACS. Appl. Mater. Inter. 10, 350–360 (2018) Shi, J., Li, J., Wang, Y., Cheng, J., Zhang, C.Y.: Recent advances in MoS2-based photothermal therapy for cancer and infectious disease treatment. J. Mater. Chem. B. 8, 5793–5807 (2020) Cao, F., Ju, E., Zhang, Y., Wang, Z., Liu, C., Li, W., Huang, Y., Dong, K., Ren, J.: An efficient and benign antimicrobial depot based on silver-infused MoS(2). ACS Nano 11, 4651–4659 (2017) Wang, X., Mansukhani, N.D., Guiney, L.M., Ji, Z., Chang, C.H., Wang, M., Liao, Y.P., Song, T.B., Sun, B., Li, R., Xia, T., Hersam, M.C., Nel, A.E.: Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the Lung. Small 11, 5079–5087 (2015) Yin, W., Yu, J., Lv, F., Yan, L., Zheng, L.R., Gu, Z.: Functionalized nano-MoS(2) with peroxidase catalytic and near-Infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS. Nano. 10, 11000–11011 (2016) Yuwen, L., Qiu, Q., Xiu, W., Yang, K., Li, Y., Xiao, H., Yang, W., Yang, D., Wang, L.: Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant infections. Biomater. Sci. 9, 4484–4495 (2021) Ma, T., Zhai, X., Huang, Y., Zhang, M., Zhao, X., Du, Y., Yan, C.: A smart nanoplatform with photothermal antibacterial capability and antioxidant activity for chronic wound healing. Adv. Healthc. Mater. 10, e2100033 (2021) Chou, S.S., Kaehr, B., Kim, J., Foley, B.M., De, M., Hopkins, P.E., Huang, J., Brinker, C.J., Dravid, V.P.: Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int Ed. Engl. 52, 4160–4164 (2013) Xu, Q.L., Liu, Y.H., Cai, L., Cao, Y., Chen, F., Zhou, L.Z., Zhu, P., Jiang, H.J., Jiang, Q.Y., Sun, Y., Chen, J.: A green electrolysis of silver-decorated MoS2 nanocomposite with an enhanced antibacterial effect and low cytotoxicity. Nanoscale. Adv. 3, 3460–3469 (2021) Yang, A., Zhou, G., Kong, X., Vilá, R.A., Pei, A., Wu, Y., Yu, X., Zheng, X., Wu, C.-L., Liu, B., Chen, H., Xu, Y., Chen, D., Li, Y., Fakra, S., Hwang, H.Y., Qin, J., Chu, S., Cui, Y.: Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol. 15, 231–237 (2020) Xu, Q., Zhu, P., Zhang, J., Liu, Y., Cai, L., Jiang, H., Ji, M., Chen, J.: Electrochemical formation of distinct nanostructured MoS2 with altered antibacterial activity. Mater. Lett. 271, 127809 (2020) Croisier, F., Sibret, P., Dupont-Gillain, C.C., Genet, M.J., Detrembleur, C., Jérôme, C.: Chitosan-coated electrospun nanofibers with antibacterial activity. J. Mater. Chem. B. 3, 3508–3517 (2015) Kurtz, I.S., Schiffman, J.D.: Current and emerging approaches to engineer antibacterial and antifouling electrospun nanofibers. Mater. (Basel). 11, 1059 (2018) He, J., Liang, Y., Shi, M., Guo, B.: Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 385, 123464 (2020) Zhao, X., Liang, Y., Guo, B., Yin, Z., Zhu, D., Han, Y.: Injectable dry cryogels with excellent blood-sucking expansion and blood clotting to cease hemorrhage for lethal deep-wounds, coagulopathy and tissue regeneration. Chem. Eng. J. 403, 126329 (2021) Sepahi, S., Kalaee, M., Mazinani, S., Abdouss, M., Hosseini, S.M.: Introducing electrospun polylactic acid incorporating etched halloysite nanotubes as a new nanofibrous web for controlled release of amoxicillin. J. Nanostructure. Chem. 11, 245–258 (2020) Wang, X., Xiang, H., Song, C., Zhu, D., Sui, J., Liu, Q., Long, Y.: Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. J. Hazard. Mater. 385, 121535 (2020) Buivydiene, D., Krugly, E., Ciuzas, D., Tichonovas, M., Kliucininkas, L., Martuzevicius, D.: Formation and characterisation of air filter material printed by melt electrospinning. J. Aerosol. Sci. 131, 48–63 (2019) Zhu, M., Xiong, R., Huang, C.: Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydr. Polym. 205, 55–62 (2019) Kim, K., Luu, Y.K., Chang, C., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyrou, M.: Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release. 98, 47–56 (2004) Gizaw, M., Thompson, J., Faglie, A., Lee, S.-Y., Neuenschwander, P., Chou, S.-F.: Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioeng. (Basel). 5, 9 (2018) Zhang, Y., Sun, P., Zhang, L., Wang, Z., Wang, F., Dong, K., Liu, Z., Ren, J., Qu, X.: Silver-infused porphyrinic metal-organic framework: surface-adaptive, on-demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv. Funct. Mater. 29, 1808594 (2019) Stanislav Presolski, M.P.: Covalent functionalization of MoS2. Mater. Today 19, 140–145 (2016) Liu, T., Wang, C., Gu, X., Gong, H., Cheng, L., Shi, X., Feng, L., Sun, B., Liu, Z.: Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 26, 3433–3440 (2014) Zhang, M., Qiao, X., Han, W., Jiang, T., Liu, F., Zhao, X.: Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr. polym. 266, 118100 (2021) Yue, L., Sun, D., Mahmood Khan, I., Liu, X., Jiang, Q., Xia, W.: Cinnamyl alcohol modified chitosan oligosaccharide for enhancing antimicrobial activity. Food chem. 309, 125513 (2020) Yan, J., Huang, Y., Miao, Y.-E., Tjiu, W.W., Liu, T.: Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. J. Hazard. Mater. 283, 730–739 (2015) Liu, Y.-H., Jing, X.-Y., Zhang, M.-L., Yan, Y.-D., Ji, D.-B., Li, P., Xu, H.-B., Xue, Y.: Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl KCl (NH4)6Mo7O24KSCN melt. Electrochim. Acta 271, 252–260 (2018) Xu, J., Gulzar, A., Liu, Y., Bi, H., Gai, S., Liu, B., Yang, D., He, F., Yang, P.: Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small 13, 1701841 (2017) Franco, R.A., Min, Y.K., Yang, H.M., Lee, B.T.: On stabilization of PVPA/PVA electrospun nanofiber membrane and its effect on material properties and biocompatibility. J. Nanomater. 2012, 393042 (2012) Liu, Y., Song, R., Zhang, X., Zhang, D.: Enhanced antimicrobial activity and pH-responsive sustained release of chitosan/poly (vinyl alcohol)/graphene oxide nanofibrous membrane loading with allicin. Int. J. Biol. Macromol. 161, 1405–1413 (2020) Chang, K., Hai, X., Pang, H., Zhang, H., Shi, L., Liu, G., Liu, H., Zhao, G., Li, M., Ye, J.: Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 28, 10033–10041 (2016) Zhang, C., Wang, L., Zhai, T., Wang, X., Dan, Y., Turng, L.S.: The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53, 403–413 (2016) Wang, X.M., Hu, Z.J., Guo, P.F., Chen, M.L., Wang, J.H.: Boron-modified defect-rich molybdenum disulfide nanosheets: reducing nonspecific adsorption and promoting a high capacity for isolation of immunoglobulin G. ACS Appl. Mater. Inter. 12, 43273–43280 (2020) Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., Grøndahl, L.: Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8, 2533–2541 (2007) Liu, R., Xu, X., Zhuang, X., Cheng, B.: Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr. Polym. 101, 1116–1121 (2014) Teng, Y., Zhao, H., Zhang, Z., Li, Z., Xia, Q., Zhang, Y., Zhao, L., Du, X., Du, Z., Lv, P., Świerczek, K.: MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS. Nano. 10, 8526–8535 (2016) Merki, D., Fierro, S., Vrubel, H., Hu, X.: Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011) Tang, W., Fan, W., Wang, Z., Zhang, W., Zhou, S., Liu, Y., Yang, Z., Shao, E., Zhang, G., Jacobson, O., Shan, L., Tian, R., Cheng, S., Lin, L., Dai, Y., Shen, Z., Niu, G., Xie, J., Chen, X.: Acidity/reducibility dual-responsive hollow mesoporous organosilica nanoplatforms for tumor-specific self-assembly and synergistic therapy. ACS. Nano. 12, 12269–12283 (2018) Yin, M., Li, Z., Ju, E., Wang, Z., Dong, K., Ren, J., Qu, X.: Multifunctional upconverting nanoparticles for near-infrared triggered and synergistic antibacterial resistance therapy. Chem. Commun. (Camb). 50, 10488–10490 (2014) Yong, Y., Zhang, C., Gu, Z., Du, J., Guo, Z., Dong, X., Xie, J., Zhang, G., Liu, X.: Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS. Nano. 11, 7164–7176 (2017) Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010) Cheng, F., Gao, J., Wang, L., Hu, X.: Composite chitosan/poly (ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs. J. Appl. Polym. Sci. 132 (2015). https://doi.org/10.1002/APP.42060 Jannesari, M., Varshosaz, J., Morshed, M., Zamani, M.: Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int. J. Nanomed. 6, 993–1003 (2011) Li, Q., Yin, Y., Cao, D., Wang, Y., Luan, P., Sun, X., Liang, W., Zhu, H.: Photocatalytic rejuvenation enabled self-sanitizing, reusable, and biodegradable masks against COVID-19. ACS. Nano. 15, 11992–12005 (2021) Huang, L., Xu, S., Wang, Z., Xue, K., Su, J., Song, Y., Chen, S., Zhu, C., Tang, B.Z., Ye, R.: Self-Reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS. Nano. 14, 12045–12053 (2020) Lin, Z., Wang, Z., Zhang, X., Diao, D.: Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano. Res. 14, 1110–1115 (2020)