Enantiomer-specific detection of chiral molecules via microwave spectroscopy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Busch K. W., Busch M. A., eds. Chiral Analysis (Elsevier, 2006)
Fischer, P. & Hache, F. Nonlinear optical spectroscopy of chiral molecules. Chirality 17, 421–437 (2005)
Fischer, P., Wiersma, D. S., Righini, R., Champagne, B. & Buckingham, A. D. Three-wave mixing in chiral liquids. Phys. Rev. Lett. 85, 4253–4256 (2000)
Li, Y. & Bruder, C. Dynamic method to distinguish between left- and right-handed chiral molecules. Phys. Rev. A 77, 015403 (2008)
Rhee, H., Choi, J.-H. & Cho, M. Infrared optical activity: electric field approaches in time domain. Acc. Chem. Res. 43, 1527–1536 (2010)
Hiramatsu, K. et al. Observation of Raman optical activity by heterodyne-detected polarization-resolved coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 109, 083901 (2012)
Hirota, E. Triple resonance for a three-level system of a chiral molecule. Proc. Jpn Acad. B 88, 120–128 (2012)
Townes, C. & Schawlow, A. Microwave Spectroscopy (Dover Publications, 1975)
Darquié, B. et al. Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22, 870–884 (2010)
Quack, M. How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Edn 41, 4618–4630 (2002)
Schnell, M. & Küpper, J. Tailored molecular samples for precision spectroscopy experiments. Faraday Discuss. 150, 33–49 (2011)
Quack, M., Stohner, J. & Willeke, M. High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Annu. Rev. Phys. Chem. 59, 741–769 (2008)
Jacob, A. & Hornberger, K. Effect of molecular rotation on enantioseparation. J. Chem. Phys. 137, 044313 (2012)
Patterson, D. & Doyle, J. M. Cooling molecules in a cell for FTMW spectroscopy. Mol. Phys. 110, 1757–1766 (2012)
Balle, T. J. & Flygare, W. H. Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source. Rev. Sci. Instrum. 52, 33–45 (1981)
Guo, C. et al. Determination of enantiomeric excess in samples of chiral molecules using Fourier transform vibrational circular dichroism spectroscopy: simulation of real-time reaction monitoring. Anal. Chem. 76, 6956–6966 (2004)
Brown, G. G. et al. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev. Sci. Instrum. 79, 053103 (2008)
Král, P., Thanopulos, I., Shapiro, M. & Cohen, D. Two-step enantio-selective optical switch. Phys. Rev. Lett. 90, 033001 (2003)
Thanopulos, I., Král, P. & Shapiro, M. Theory of a two-step enantiomeric purification of racemic mixtures by optical means: the D2S2 molecule. J. Chem. Phys. 119, 5105–5116 (2003)
Gerbasi, D., Brumer, P., Thanopulos, I., Král, P. & Shapiro, M. Theory of the two step enantiomeric purification of 1,3 dimethylallene. J. Chem. Phys. 120, 11557–11563 (2004)
Pate, B. H. & De Lucia, F. C. (eds) Special issue: Broadband molecular rotational spectroscopy. J. Mol. Spectrosc. 280, 1–2 (2012)
Mata, S., Peña, I., Cabezas, C., López, J. & Alonso, J. A broadband Fourier transform microwave spectrometer with laser ablation source: the rotational spectrum of nicotinic acid. J. Mol. Spectrosc. 280, 91–96 (2012)
Grabow, J.-U. et al. Rapid probe of the nicotine spectra by high-resolution rotational spectroscopy. Phys. Chem. Chem. Phys. 13, 21063–21069 (2011)
Western, C. M. PGOPHER, a Program for Simulating Rotational Structure Version 7.1 (Univ. Bristol, 2010)