Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer

Chinese Chemical Letters - Tập 35 - Trang 108561 - 2024
Ziling Jiang1,2, Shaoqing Chen3, Chaochao Wei1, Ziqi Zhang2, Zhongkai Wu, Qiyue Luo1, Liang Ming1, Long Zhang4, Chuang Yu1,2
1School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
4College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China

Tài liệu tham khảo

Yao, 2016, Chin. Phys. B, 25 Cheng, 2017, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115 Tarascon, 2001, Nature, 414, 359, 10.1038/35104644 Goodenough, 2009, Chem. Mater., 22, 587, 10.1021/cm901452z Wang, 2020, Nano Energy, 72 Kim, 2019, Nat. Commun., 10, 1081, 10.1038/s41467-019-09061-9 Chen, 2022, Chin. Chem. Lett., 34 Wei, 2023, Chin. Chem. Lett., 34, 107859, 10.1016/j.cclet.2022.107859 Guo, 2022, Energy Mater. Adv., 2022, 8 Yu, 2019, J. Energy Chem., 38, 1, 10.1016/j.jechem.2018.12.017 Liao, 2023, Renewables, 1 Liao, 2022, Materialia, 26, 10.1016/j.mtla.2022.101603 Yu, 2020, Nano Energy, 69 Yu, 2020, Energy Storage Mater, 30, 238, 10.1016/j.ensm.2020.04.014 Ahmad, 2022, Adv. Funct. Mater., 32 Yang, 2022, Energy Mater. Adv., 2022, 41 Kim, 2023, Energy Storage Mater, 55, 193, 10.1016/j.ensm.2022.11.038 Li, 2019, Energy Storage Mater, 18, 100, 10.1016/j.ensm.2018.10.003 Wei, 2023, Electrochim. Acta, 438, 10.1016/j.electacta.2022.141545 Payandeh, 2022, Nano Res. Energy, 1, 10.26599/NRE.2022.9120016 Kitaura, 2010, Electrochim. Acta, 55, 8821, 10.1016/j.electacta.2010.07.066 Ohta, 2006, Adv. Mater., 18, 2226, 10.1002/adma.200502604 Ito, 2014, J. Power Sources, 248, 943, 10.1016/j.jpowsour.2013.10.005 Lee, 2018, J. Electrochem. Sci. Technol., 9, 176, 10.33961/JECST.2018.9.3.176 Sakuda, 2009, J. Power Sources, 189, 527, 10.1016/j.jpowsour.2008.10.129 Sakuda, 2009, Chem. Mater., 22, 949, 10.1021/cm901819c Wei, 2023, Appl. Mater. Today, 31 Yu, 2021, Nano Energy, 83, 10.1016/j.nanoen.2021.105858 Chen, 2023, Energy Mater. Adv., 4, 0019, 10.34133/energymatadv.0019 Yu, 2017, Nat. Commun., 8, 1086, 10.1038/s41467-017-01187-y Peng, 2016, J. Power Sources, 307, 724, 10.1016/j.jpowsour.2016.01.039 Park, 2014, Bull. Korean Chem. Soc., 35, 357, 10.5012/bkcs.2014.35.2.357 Li, 1993, Solid State Ionics, 67, 123, 10.1016/0167-2738(93)90317-V Lu, 2010, J. Alloys Compd., 497, 159, 10.1016/j.jallcom.2010.02.127 Banerjee, 2019, ACS Appl. Mater. Interfaces, 11, 43138, 10.1021/acsami.9b13955 Shin, 2022, J. Mater. Chem. A, 10, 23222, 10.1039/D2TA05021H Tsujimura, 2022, Solid State Ionics, 383, 10.1016/j.ssi.2022.115970 Yin, 2015, Solid State Ionics, 274, 8, 10.1016/j.ssi.2015.02.014 Jung, 2019, Adv. Energy Mater., 10 Wang, 2022, eScience, 2, 537, 10.1016/j.esci.2022.06.001 Auvergniot, 2017, Solid State Ionics, 300, 78, 10.1016/j.ssi.2016.11.029 Auvergniot, 2017, Chem. Mater., 29, 3883, 10.1021/acs.chemmater.6b04990 Wei, 2023, J. Power Sources, 559, 10.1016/j.jpowsour.2023.232659 Wang, 2020, Nano Energy, 76