Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids

Energy Conversion and Management - Tập 52 Số 1 - Trang 789-793 - 2011
Massimo Corcione1
1Dipartimento di Fisica Tecnica, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, vols. 31/MD–66, 99

Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int J Therm Sci, 46, 1, 10.1016/j.ijthermalsci.2006.06.010

Trisaksri, 2007, Critical review of heat transfer characteristics of nanofluids, Renew Sust Energy Rev, 11, 512, 10.1016/j.rser.2005.01.010

Daungthongsuk, 2007, A critical review of convective heat transfer in nanofluids, Renew Sust Energy Rev, 11, 797, 10.1016/j.rser.2005.06.005

Murshed, 2008, Thermophysical and electrokinetic properties of nanofluids – a critical review, Appl Therm Eng, 28, 2109, 10.1016/j.applthermaleng.2008.01.005

Maxwell, 1954

Hamilton, 1962, Thermal conductivity of heterogeneous two component systems, Ind Eng Chem Fund, 1, 187, 10.1021/i160003a005

Davis, 1986, The effective thermal conductivity of a composite material with spherical inclusions, Int J Thermophys, 7, 609, 10.1007/BF00502394

Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J Nanopart Res, 5, 167, 10.1023/A:1024438603801

Xue, 2003, Model for effective thermal conductivity of nanofluids, Phys Lett A, 307, 313, 10.1016/S0375-9601(02)01728-0

Kumar, 2004, Model for heat conduction in nanofluids, Phys Rev Lett, 93, 144301, 10.1103/PhysRevLett.93.144301

Koo, 2004, A new thermal conductivity model for nanofluids, J Nanopart Res, 6, 577, 10.1007/s11051-004-3170-5

Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl Phys Lett, 84, 4316, 10.1063/1.1756684

Jang, 2007, Effects of various parameters on nanofluid thermal conductivity, J Heat Trans, 129, 617, 10.1115/1.2712475

Xie, 2005, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, Int J Heat Mass Trans, 48, 2926, 10.1016/j.ijheatmasstransfer.2004.10.040

Patel, 2005, A micro-convection model for the thermal conductivity of nanofluids, Pramana – J Phys, 65, 863, 10.1007/BF02704086

Ren, 2005, Effective thermal conductivity of nanofluids containing spherical nanoparticles, J Phys D: Appl Phys, 38, 3958, 10.1088/0022-3727/38/21/019

Prasher, 2005, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys Rev Lett, 94, 025901, 10.1103/PhysRevLett.94.025901

Prasher, 2006, Brownian motion-based convective–conductive model for the effective thermal conductivity of nanofluids, J Heat Trans, 128, 588, 10.1115/1.2188509

Leong, 2006, A model for the thermal conductivity of nanofluids – the effect of interfacial layer, J Nanopart Res, 8, 245, 10.1007/s11051-005-9018-9

Xuan, 2006, Stochastic thermal transport of nanoparticle suspensions, J Appl Phys, 100, 043507, 10.1063/1.2245203

Prakash, 2007, Mechanism of heat transport in nanofluids, J Computer-Aided Mater Des, 14, 109, 10.1007/s10820-006-9025-x

Murshed, 2009, A combined model for the effective thermal conductivity of nanofluids, Appl Therm Eng, 29, 2477, 10.1016/j.applthermaleng.2008.12.018

Einstein, 1906, Eine neue bestimmung der molekul-dimension (A new determination of the molecular dimensions), Ann Phys, 19, 289, 10.1002/andp.19063240204

Einstein, 1911, Berichtigung zu meiner arbeit: Eine neue bestimmung der molekul-dimension (Correction of my work: a new determination of the molecular dimensions), Ann Phys, 34, 591, 10.1002/andp.19113390313

Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J Chem Phys, 20, 571, 10.1063/1.1700493

Lundgren, 1972, Slow flow through stationary random beds and suspensions of spheres, J Fluid Mech, 51, 273, 10.1017/S002211207200120X

Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J Fluid Mech, 83, 97, 10.1017/S0022112077001062

Koo J. Computational nanofluid flow and heat transfer analyses applied to micro-systems. Dissertation Thesis, North Carolina State University, Rayleigh, NC; 2005.

Masoumi, 2009, A new model for calculating the effective viscosity of nanofluids, J Phys D: Appl Phys, 42, 055501, 10.1088/0022-3727/42/5/055501

Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, 4, 227, 10.2963/jjtp.7.227

Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp Heat Trans, 11, 151, 10.1080/08916159808946559

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J Heat Trans, 121, 280, 10.1115/1.2825978

Eastman, 2001, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl Phys Lett, 78, 718, 10.1063/1.1341218

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J Heat Trans, 125, 567, 10.1115/1.1571080

Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl Phys Lett, 87, 153107, 10.1063/1.2093936

Chon, 2005, Thermal conductivity enhancement of nanofluids by Brownian motion, J Heat Trans, 127, 810, 10.1115/1.2033316

Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int J Therm Sci, 47, 560, 10.1016/j.ijthermalsci.2007.05.004

Mintsa, 2009, New temperature dependent thermal conductivity data for water-based nanofluids, Int J Therm Sci, 48, 363, 10.1016/j.ijthermalsci.2008.03.009

Duangthongsuk, 2009, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp Therm Fluid Sci, 33, 706, 10.1016/j.expthermflusci.2009.01.005

Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int J Heat Mass Trans, 45, 855, 10.1016/S0017-9310(01)00175-2

Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J Thermophys Heat Trans, 13, 474, 10.2514/2.6486

Das, 2003, Pool boiling characteristics of nano-fluids, Int J Heat Mass Trans, 46, 851, 10.1016/S0017-9310(02)00348-4

Putra, 2003, Natural convection of nano-fluids, Heat Mass Trans, 39, 775, 10.1007/s00231-002-0382-z

Prasher, 2006, Measurements of nanofluid viscosity and its implications for thermal applications, Appl Phys Lett, 89, 133108, 10.1063/1.2356113

He, 2007, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int J Heat Mass Trans, 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024

Chen, 2007, Rheological behaviour of nanofluids, New J Phys, 9, 367, 10.1088/1367-2630/9/10/367

Chen, 2007, Rheological behaviour of ethylene glycol based titania nanofluids, Chem Phys Lett, 444, 333, 10.1016/j.cplett.2007.07.046

Chevalier, 2007, Rheological properties of nanofluids flowing through microchannels, Appl Phys Lett, 91, 233103, 10.1063/1.2821117

Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int J Heat Mass Trans, 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026

Garg, 2008, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid, J Appl Phys, 103, 074301, 10.1063/1.2902483