Empirical bayesInterval estimates: An application to geographical epidemiology

Journal of the Italian Statistical Society - Tập 2 - Trang 251-267 - 1993
Annibale Biggeri1, Mario Braga2, Marco Marchi1
1Dipartimento statistico, Università di Firenze, Firenze, Italy
2Laboratorio Epidemiologico, Ospedale Maggiore, Milano

Tóm tắt

Empirical Bayes estimates have been advocated as an improvement for mapping rare diseases or health events aggregated in small areas. In particular different parametric approaches have been proposed for dealing with non-normal data, assuming that disease occurrencies follow non-homogeneous Poisson law, whose parameters are treated as random variables. This paper shows how to conduct a complete Empirical Bayes analysis under an exchangeable model in the context of Geographical Epidemiology. Three different approaches for defining confidence limits obtained using a parametric bootstrap are compared: method 1 relies only on the first and second moment of the bootstrapped posterior distributions; method 2 computes the centiles of the bootstrapped posteriors; method 3 equates to α the average of the probabilities derived from the estimated bootstrapped cumulative posterior distributions. The simple Poisson-Gamma formulation was used to model mortality data on Larynx Cancer in the Local Health Units of Tuscany (1980–82 males). Two areas of significant elevated risk are identified.

Tài liệu tham khảo

Becker R., Chambers J., Wilks A. (1988),The S Language. Wadsworth: Belmont CA. Bernardinelli L., Montomoli C. (1992), Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk.Statistics in Medicine,11, 983–1007. Besag J., York J., Mollié A. (1991), Bayesian image restoration, with two applications in spatial statistics.Ann. Inst. Statist. Math.,43, 1–59. Biggeri A., Braga M., Duca P. G. (1989), Empirical Bayes estimates applied to the analysis of cancer death collected at municipality level.Proceedings XI Meeting International Epidemiological Association. Granada, Spain. Breslow N. E., Day N. E. (1975), Indirect standardization and multiplicative models for rates, with reference to the age-adjustment of cancer incidence and relative frequency data.J. Chron. Dis.,28, 289–303. Carlin B. P., Gelfand A. E. (1990), Approaches for Empirical Bayes confidence intervals.J. Am. Statist. Ass.,85, 105–114. Carlin B. P., Gelfand A. E. (1991), A sample reuse method for accurate parametric Empirical Bayes confidence intervals.J. R. Statist. Soc. B,53, 189–200. Clayton, D., Kaldor J. (1987), Empirical Bayes estimates of age-standardized relative risks for use in disease mapping.Biometrics,43, 671–681. Dagpunar J. (1988),Principles of random variate generation. Oxford Science publication, Clarendon Press: Oxford. DiCiccio T. J., Romano J. P. (1988), A review of bootstrap confidence intervals.J. R. Statist. Soc. B.,50, 338–354. Efron B. (1982),The jacknife, the bootstrap and other resampling plans. SIAM: Philadelphia. Efron B., Tibshirani R. J. (1993),An Introduction to the Bootstrap. Chapman & Hall: New York, 321–322. Fron B., Morris C. (1975), Data analysis using Stein's estimation and its generalization.J. Am. Statist. Ass.,70, 311–319. Elliott, P., Hills M., Beresford J. (1992), Incidence of cancers of the larynx and lung near incinerators of waste solvents and oils in Great Britain.Lancet,339, 854–858. Gardner M. J. (1984), Over a century of changing interpretation of geographical cancer pattern in England and Wales.Trace Substances in Environmental Health, 527–533. Laird N. M., Louis T. A. (1987), Empirical Bayes intervals based on bootstrap samples.J. Am. Statist. Ass.,82, 739–757. Manton K. G., Woodbury M. A., Stallard E., Riggan W. B., Creason J. P., Pellon A. C. (1989), Empirical Bayes procedures for stabilising maps of US cancer mortality.J. Am. Statist. ass.,84, 637–650. Marshall R. J. (1991), Mapping disease and mortality rates using Empirical Bayes estimators.Appl. Statist.,40, 283–294. Ministero dell'Ambiente,Relazione Annuale: 1992: Roma, febbraio 1992. Mollié A., Richardson S. (1991), Empirical Bayes estimates of cancer mortality rates using spatial models.Statistics in Medicine,10, 95–112. Morgenstern H. (1982), Use of ecological analysis in epidemiologic research.Am. J. Publ. Health,72, 1336–1344. Morris C. N. (1983) Parametric Empirical Bayes inference: theory and applications.J. Am. Statist. Ass.,78, 47–65. Tsutakawa, R. K. (1988), Mixed models for analysing variability in mortality rates.J. Am. Statist. Ass.,83, 37–42.