Emperor penguin optimizer: A bio-inspired algorithm for engineering problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. K. Chandrawat, R. Kumar, B. P. Garg, G. Dhiman, S. Kumar, An Analysis of Modeling and Optimization Production Cost Through Fuzzy Linear Programming Problem with Symmetric and Right Angle Triangular Fuzzy Number, Springer Singapore, Singapore, pp. 197–211.
Singh, 2017, A fuzzy-lp approach in time series forecasting, 243
Singh, 2018, Uncertainty representation using fuzzy-entropy approach: special application in remotely sensed high resolution satellite images (RSHRSIs), Appl. Soft Comput., 10.1016/j.asoc.2018.07.038
Alba, 2005, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms, IEEE Trans. Evolut. Comput., 9, 126, 10.1109/TEVC.2005.843751
Olorunda, 2008, Measuring exploration/exploitation in particle swarms using swarm diversity, IEEE Congr. Evolut. Comput., 1128
Lozano, 2010, Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report, Comput. Oper. Res., 37(3), 481, 10.1016/j.cor.2009.02.010
Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evolut. Comput., 1, 67, 10.1109/4235.585893
Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671
Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci. (NY), 179, 2232, 10.1016/j.ins.2009.03.004
Erol, 2006, A new optimization method: big bang-big crunch, Adv. Eng. Softw., 37, 106, 10.1016/j.advengsoft.2005.04.005
Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech., 213, 267, 10.1007/s00707-009-0270-4
Hatamlou, 2013, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci. (NY), 222, 175, 10.1016/j.ins.2012.08.023
Formato, 2009, Central force optimization: a new deterministic gradient-like optimization metaheuristic, Opsearch, 46, 25, 10.1007/s12597-009-0003-4
Du, 2006, 264
Alatas, 2011, ACROA: artificial chemical reaction optimization algorithm for global optimization, Expert Syst. Appl., 38, 13170, 10.1016/j.eswa.2011.04.126
Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput. Struct., 112–113, 283, 10.1016/j.compstruc.2012.09.003
Shah Hosseini, 2011, Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation, Int. J. Comput. Sci. Eng., 6, 132
Moghaddam FF, Moghaddam RF, Cheriet M. Curved space optimization: A random search based on general relativity theory, 2012. arXiv preprint arXiv:1208.2214.
Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341, 10.1023/A:1008202821328
Koza, 1992
Beyer, 2002, Evolution strategies–a comprehensive introduction, Nat. Comput.s, 1, 3, 10.1023/A:1015059928466
Simon, 2008, Biogeography-based optimization, IEEE Trans. Evolut. Comput., 12, 702, 10.1109/TEVC.2008.919004
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
Slowik, 2017, Nature inspired methods and their industry applications - swarm intelligence algorithms, IEEE Trans. Ind. Inf., PP
Dorigo, 2006, Ant colony optimization - artificial ants as a computational intelligence technique, IEEE Comput. Intell. Mag., 1, 28, 10.1109/MCI.2006.329691
Yang, 2010, 65
D. Karaboga, B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 789–798.
Dhiman, 2017, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., 114, 48, 10.1016/j.advengsoft.2017.05.014
X.S. Yang, S. Deb, Cuckoo search via levy flights, in: Proceedings of the World Congress on Nature Biologically Inspired Computing, 2009, pp. 210–214. 10.1109/NABIC.2009.5393690.
Mucherino, 2007, Monkey search: a novel metaheuristic search for global optimization, AIP Conf. Proc., 953, 162, 10.1063/1.2817338
S. Das, A. Biswas, S. Dasgupta, A. Abraham, Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications, Springer, Berlin, Heidelberg, pp. 23–55.
Yang, 2010, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio Inspired Comput., 2, 78, 10.1504/IJBIC.2010.032124
Pan, 2012, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl. Based Syst., 26, 69, 10.1016/j.knosys.2011.07.001
Wu, 2018, A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems, Knowl. Based Syst., 144, 153, 10.1016/j.knosys.2017.12.031
Han, 2018, Novel fruit fly optimization algorithm with trend search and co-evolution, Knowl. Based Syst., 141, 1, 10.1016/j.knosys.2017.11.001
Mitic, 2015, Chaotic fruit fly optimization algorithm, Knowl. Based Syst., 89, 446, 10.1016/j.knosys.2015.08.010
Wang, 2016, A part-of-speech term weighting scheme for biomedical information retrieval, J. Biomed. Inform., 63, 379, 10.1016/j.jbi.2016.08.026
Orozco-Henao, 2017, Active distribution network fault location methodology: a minimum fault reactance and fibonacci search approach, Int. J. Elect. Power Energy Syst., 84, 232, 10.1016/j.ijepes.2016.06.002
Askarzadeh, 2014, Bird mating optimizer: an optimization algorithm inspired by bird mating strategies, Commun. Nonlinear Sci. Numer. Simul., 19, 1213, 10.1016/j.cnsns.2013.08.027
Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010
Neshat, 2014, Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications, Artif. Intell. Rev., 42, 965, 10.1007/s10462-012-9342-2
Y. Shiqin, J. Jianjun, Y. Guangxing, A dolphin partner optimization, in: Proceedings of the WRI Global Congress on Intelligent Systems (2009) 124–128. 10.1109/GCIS.2009.464.
Oftadeh, 2010, A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search, Comput. Math. Appl., 60, 2087, 10.1016/j.camwa.2010.07.049
Mirjalili, 2015, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl. Based Syst., 89, 228, 10.1016/j.knosys.2015.07.006
Dhiman, 2018, A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization
Dhiman, 2018, Spotted hyena optimizer for solving complex and non-linear constrained engineering problems
Kaur, 2018, A review on search based tools and techniques to identify bad code smells in object oriented systems
Singh, 2018, A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches, J. Comput. Sci., 10.1016/j.jocs.2018.05.008
Digalakis, 2001, On benchmarking functions for genetic algorithms, Int. J. Comput. Math., 77, 481, 10.1080/00207160108805080
J.J. Liang, P.N. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, in: Proceedings of the IEEE Swarm Intelligence Symposium, 2005, pp. 68–75. 10.1109/SIS.2005.1501604.
Q. Chen, B. Liu, Q. Zhang, J. Liang, P. Suganthan, B. Qu, Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive numerical optimization, Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University (2014).
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report, Nanyang Technological University, Singapore (2005).
G. Dhiman, A. Kaur, Spotted hyena optimizer for solving engineering design problems, in: Proceedings of the International Conference on Machine Learning and Data Science (MLDS), 2017, pp. 114–119. 10.1109/MLDS.2017.5.
Dhiman, 2018, Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems, Knowl. Based Syst., 150, 175, 10.1016/j.knosys.2018.03.011
Mirjalili, 2016, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495, 10.1007/s00521-015-1870-7
Mirjalili, 2016, SCA: a sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 96, 120, 10.1016/j.knosys.2015.12.022
Bonabeau, 1999
Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201
Coello, 2002, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Eng., 191, 1245, 10.1016/S0045-7825(01)00323-1
Kannan, 1994, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116, 405, 10.1115/1.2919393
Gandomi, 2011, 259
Mezura-Montes, 2005, 652
Bichon, 2004, Design of space trusses using ant colony optimization, J. Struct. Eng., 130, 741, 10.1061/(ASCE)0733-9445(2004)130:5(741)
Schutte, 2003, Sizing design of truss structures using particle swarms, Struct. Multidiscip. Optim., 25, 261, 10.1007/s00158-003-0316-5
Kaveh, 2010, Optimal design of skeletal structures via the charged system search algorithm, Struct. Multidiscip. Optim., 41, 893, 10.1007/s00158-009-0462-5