Emperor penguin optimizer: A bio-inspired algorithm for engineering problems

Knowledge-Based Systems - Tập 159 - Trang 20-50 - 2018
Gaurav Dhiman1, Vijay Kumar1
1Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. K. Chandrawat, R. Kumar, B. P. Garg, G. Dhiman, S. Kumar, An Analysis of Modeling and Optimization Production Cost Through Fuzzy Linear Programming Problem with Symmetric and Right Angle Triangular Fuzzy Number, Springer Singapore, Singapore, pp. 197–211.

Singh, 2017, A fuzzy-lp approach in time series forecasting, 243

Singh, 2018, Uncertainty representation using fuzzy-entropy approach: special application in remotely sensed high resolution satellite images (RSHRSIs), Appl. Soft Comput., 10.1016/j.asoc.2018.07.038

Alba, 2005, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms, IEEE Trans. Evolut. Comput., 9, 126, 10.1109/TEVC.2005.843751

Olorunda, 2008, Measuring exploration/exploitation in particle swarms using swarm diversity, IEEE Congr. Evolut. Comput., 1128

Lozano, 2010, Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report, Comput. Oper. Res., 37(3), 481, 10.1016/j.cor.2009.02.010

Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evolut. Comput., 1, 67, 10.1109/4235.585893

Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671

Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci. (NY), 179, 2232, 10.1016/j.ins.2009.03.004

Erol, 2006, A new optimization method: big bang-big crunch, Adv. Eng. Softw., 37, 106, 10.1016/j.advengsoft.2005.04.005

Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech., 213, 267, 10.1007/s00707-009-0270-4

Hatamlou, 2013, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci. (NY), 222, 175, 10.1016/j.ins.2012.08.023

Formato, 2009, Central force optimization: a new deterministic gradient-like optimization metaheuristic, Opsearch, 46, 25, 10.1007/s12597-009-0003-4

Du, 2006, 264

Alatas, 2011, ACROA: artificial chemical reaction optimization algorithm for global optimization, Expert Syst. Appl., 38, 13170, 10.1016/j.eswa.2011.04.126

Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput. Struct., 112–113, 283, 10.1016/j.compstruc.2012.09.003

Shah Hosseini, 2011, Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation, Int. J. Comput. Sci. Eng., 6, 132

Moghaddam FF, Moghaddam RF, Cheriet M. Curved space optimization: A random search based on general relativity theory, 2012. arXiv preprint arXiv:1208.2214.

Holland, 1992, Genetic algorithms, Sci. Am., 267, 66, 10.1038/scientificamerican0792-66

Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341, 10.1023/A:1008202821328

Koza, 1992

Beyer, 2002, Evolution strategies–a comprehensive introduction, Nat. Comput.s, 1, 3, 10.1023/A:1015059928466

Simon, 2008, Biogeography-based optimization, IEEE Trans. Evolut. Comput., 12, 702, 10.1109/TEVC.2008.919004

J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.

Slowik, 2017, Nature inspired methods and their industry applications - swarm intelligence algorithms, IEEE Trans. Ind. Inf., PP

Dorigo, 2006, Ant colony optimization - artificial ants as a computational intelligence technique, IEEE Comput. Intell. Mag., 1, 28, 10.1109/MCI.2006.329691

Yang, 2010, 65

D. Karaboga, B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems, Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 789–798.

Dhiman, 2017, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., 114, 48, 10.1016/j.advengsoft.2017.05.014

X.S. Yang, S. Deb, Cuckoo search via levy flights, in: Proceedings of the World Congress on Nature Biologically Inspired Computing, 2009, pp. 210–214. 10.1109/NABIC.2009.5393690.

Mucherino, 2007, Monkey search: a novel metaheuristic search for global optimization, AIP Conf. Proc., 953, 162, 10.1063/1.2817338

S. Das, A. Biswas, S. Dasgupta, A. Abraham, Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications, Springer, Berlin, Heidelberg, pp. 23–55.

Yang, 2010, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio Inspired Comput., 2, 78, 10.1504/IJBIC.2010.032124

Pan, 2012, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl. Based Syst., 26, 69, 10.1016/j.knosys.2011.07.001

Wu, 2018, A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems, Knowl. Based Syst., 144, 153, 10.1016/j.knosys.2017.12.031

Han, 2018, Novel fruit fly optimization algorithm with trend search and co-evolution, Knowl. Based Syst., 141, 1, 10.1016/j.knosys.2017.11.001

Mitic, 2015, Chaotic fruit fly optimization algorithm, Knowl. Based Syst., 89, 446, 10.1016/j.knosys.2015.08.010

Wang, 2016, A part-of-speech term weighting scheme for biomedical information retrieval, J. Biomed. Inform., 63, 379, 10.1016/j.jbi.2016.08.026

Orozco-Henao, 2017, Active distribution network fault location methodology: a minimum fault reactance and fibonacci search approach, Int. J. Elect. Power Energy Syst., 84, 232, 10.1016/j.ijepes.2016.06.002

Askarzadeh, 2014, Bird mating optimizer: an optimization algorithm inspired by bird mating strategies, Commun. Nonlinear Sci. Numer. Simul., 19, 1213, 10.1016/j.cnsns.2013.08.027

Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010

Neshat, 2014, Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications, Artif. Intell. Rev., 42, 965, 10.1007/s10462-012-9342-2

Y. Shiqin, J. Jianjun, Y. Guangxing, A dolphin partner optimization, in: Proceedings of the WRI Global Congress on Intelligent Systems (2009) 124–128. 10.1109/GCIS.2009.464.

Oftadeh, 2010, A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search, Comput. Math. Appl., 60, 2087, 10.1016/j.camwa.2010.07.049

Mirjalili, 2015, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl. Based Syst., 89, 228, 10.1016/j.knosys.2015.07.006

Dhiman, 2018, A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization

Dhiman, 2018, Spotted hyena optimizer for solving complex and non-linear constrained engineering problems

Kaur, 2018, A review on search based tools and techniques to identify bad code smells in object oriented systems

Singh, 2018, A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches, J. Comput. Sci., 10.1016/j.jocs.2018.05.008

Waters, 2012, Modeling huddling penguins, PLoS ONE, 7, e50277, 10.1371/journal.pone.0050277

Digalakis, 2001, On benchmarking functions for genetic algorithms, Int. J. Comput. Math., 77, 481, 10.1080/00207160108805080

J.J. Liang, P.N. Suganthan, K. Deb, Novel composition test functions for numerical global optimization, in: Proceedings of the IEEE Swarm Intelligence Symposium, 2005, pp. 68–75. 10.1109/SIS.2005.1501604.

Q. Chen, B. Liu, Q. Zhang, J. Liang, P. Suganthan, B. Qu, Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive numerical optimization, Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University (2014).

P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report, Nanyang Technological University, Singapore (2005).

G. Dhiman, A. Kaur, Spotted hyena optimizer for solving engineering design problems, in: Proceedings of the International Conference on Machine Learning and Data Science (MLDS), 2017, pp. 114–119. 10.1109/MLDS.2017.5.

Dhiman, 2018, Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems, Knowl. Based Syst., 150, 175, 10.1016/j.knosys.2018.03.011

Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., 69, 46, 10.1016/j.advengsoft.2013.12.007

Mirjalili, 2016, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495, 10.1007/s00521-015-1870-7

Mirjalili, 2016, SCA: a sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 96, 120, 10.1016/j.knosys.2015.12.022

Bonabeau, 1999

Geem, 2001, A new heuristic optimization algorithm: harmony search, Simulation, 76, 60, 10.1177/003754970107600201

Coello, 2002, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Eng., 191, 1245, 10.1016/S0045-7825(01)00323-1

Kannan, 1994, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116, 405, 10.1115/1.2919393

Gandomi, 2011, 259

Mezura-Montes, 2005, 652

Bichon, 2004, Design of space trusses using ant colony optimization, J. Struct. Eng., 130, 741, 10.1061/(ASCE)0733-9445(2004)130:5(741)

Schutte, 2003, Sizing design of truss structures using particle swarms, Struct. Multidiscip. Optim., 25, 261, 10.1007/s00158-003-0316-5

Kaveh, 2010, Optimal design of skeletal structures via the charged system search algorithm, Struct. Multidiscip. Optim., 41, 893, 10.1007/s00158-009-0462-5

Kaveh, 2009, Size optimization of space trusses using big bang-big crunch algorithm, Comput. Struct., 87, 1129, 10.1016/j.compstruc.2009.04.011