Emerging opportunities for black phosphorus in energy applications

Materials Today Energy - Tập 12 - Trang 1-25 - 2019
Shenghuang Lin1, Yanyong Li1, Jiasheng Qian1, Shu Ping Lau1
1Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896

Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849

Qiu, 2017, Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale, 9, 13384, 10.1039/C7NR03318D

Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

Feng, 2012, Strain-engineered artificial atom as a broad-spectrum solar energy funnel, Nat. Photon., 6, 866, 10.1038/nphoton.2012.285

Fontana, 2013, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions, Sci. Rep., 3, 1634, 10.1038/srep01634

Bernardi, 2013, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett., 13, 3664, 10.1021/nl401544y

Yin, 2012, Single-layer MoS2 phototransistors, ACS Nano, 6, 74, 10.1021/nn2024557

Lee, 2012, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett., 12, 3695, 10.1021/nl301485q

Ye, 2013, Exciton-related electroluminescence from monolayer MoS2, arXiv, 1305, 4235

Li, 2016, Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production, J. Am. Chem. Soc., 138, 7681, 10.1021/jacs.6b03472

Zeng, 2018, Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction, Adv. Funct. Mater., 28, 1705970, 10.1002/adfm.201705970

Zeng, 2018, Ultrafast and sensitive photodetector based on PtSe2/silicon nanowire array heterojunction with multiband spectral response from 200 to 1550 nm, NPG Asia Mater., 10, 352, 10.1038/s41427-018-0035-4

Lin, 2017, Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction, Nano Energy, 42, 26, 10.1016/j.nanoen.2017.10.038

Yin, 2018, A low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cell, J. Mater. Chem., 6, 9132, 10.1039/C8TA01143E

Yuan, 2018, Wafer-scale fabrication of 2D van der Waals heterojunctions for efficient and broadband photodetection, ACS Appl. Mater. Interfaces, 10, 40614, 10.1021/acsami.8b13620

Tan, 2016, Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes, ACS Nano, 10, 7866, 10.1021/acsnano.6b03722

Huang, 2014, Large-area synthesis of highly crystalline WSe2 monolayers and device applications, ACS Nano, 8, 923, 10.1021/nn405719x

Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35

Lin, 2017, In situ observation of the thermal stability of black phosphorus, 2D Mater., 4, 10.1088/2053-1583/aa55b2

Lin, 2016, Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics, Adv. Funct. Mater., 26, 864, 10.1002/adfm.201503273

Tran, 2014, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys. Rev. B, 89, 235319, 10.1103/PhysRevB.89.235319

Guo, 2016, Black phosphorus mid-infrared photodetectors with high gain, Nano Lett., 16, 4648, 10.1021/acs.nanolett.6b01977

Mayorga-Martinez, 2015, Layered black phosphorus as a selective vapor sensor, Angew. Chem., 127, 14525, 10.1002/ange.201505015

Mu, 2015, Adv. Opt. Mater., 3, 1447, 10.1002/adom.201500336

Lu, 2015, Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material, Optic Express, 23, 11183, 10.1364/OE.23.011183

Liu, 2017, Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics, Angew. Chem., 56, 13717, 10.1002/anie.201707510

Yang, 2016, Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells, Adv. Mater., 28, 8937, 10.1002/adma.201602382

Zhu, 2017, Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride, J. Am. Chem. Soc., 139, 13234, 10.1021/jacs.7b08416

Tian, 2018, Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K, Nat. Commun., 9, 1397, 10.1038/s41467-018-03737-4

Saito, 2016, Gate-tuned thermoelectric power in black phosphorus, Nano Lett., 16, 4819, 10.1021/acs.nanolett.6b00999

Li, 2017, Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy, ACS Appl. Mater. Interfaces, 9, 25098, 10.1021/acsami.7b05824

Gao, 2018, Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus, Adv. Mater., 30, 1705088, 10.1002/adma.201705088

Hao, 2016, Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes, Adv. Mater., 28, 3194, 10.1002/adma.201505730

Sun, 2015, A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194

Liu, 2017, Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery, ACS Appl. Mater. Interfaces, 9, 36849, 10.1021/acsami.7b11599

Favron, 2015, Photooxidation and quantum confinement effects in exfoliated black phosphorus, Nat. Mater., 14, 826, 10.1038/nmat4299

Abellan, 2017, Fundamental insights into the degradation and stabilization of thin layer black phosphorus, J. Am. Chem. Soc., 139, 10432, 10.1021/jacs.7b04971

Wood, 2014, Effective passivation of exfoliated black phosphorus transistors against ambient degradation, Nano Lett., 14, 6964, 10.1021/nl5032293

Zhao, 2016, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed., 55, 5003, 10.1002/anie.201512038

Guo, 2017, Metal-ion-modified black phosphorus with enhanced stability and transistor performance, Adv. Mater., 29, 1703811, 10.1002/adma.201703811

Ryder, 2016, Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry, Nat. Chem., 8, 597, 10.1038/nchem.2505

Smith, 2016, Growth of 2D black phosphorus film from chemical vapor deposition, Nanotechnology, 27, 215602, 10.1088/0957-4484/27/21/215602

Li, 2018, Synthesis of crystalline black phosphorus thin film on sapphire, Adv. Mater., 30

Liu, 2015, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A

Lu, 2016, Light–matter interactions in phosphorene, Acc. Chem. Res., 49, 1806, 10.1021/acs.accounts.6b00266

Lin, 2017, Liquid-phase exfoliation of black phosphorus and its applications, FlatChem, 2, 15, 10.1016/j.flatc.2017.03.001

Xia, 2014, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun., 5, 4458, 10.1038/ncomms5458

Li, 2017, Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain, Adv. Funct. Mater., 27, 1600986, 10.1002/adfm.201600986

Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475

Liang, 2014, Electronic bandgap and edge reconstruction in phosphorene materials, Nano Lett., 14, 6400, 10.1021/nl502892t

Yang, 2015, Optical tuning of exciton and trion emissions in monolayer phosphorene, Light Sci. Appl., 4, e312, 10.1038/lsa.2015.85

Das, 2014, Tunable transport gap in phosphorene, Nano Lett., 14, 5733, 10.1021/nl5025535

Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w

Koenig, 2014, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett., 104, 103106, 10.1063/1.4868132

Liu, 2014, An unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z

Castellanos-Gomez, 2014, Isolation and characterization of few-layer black phosphorus, 2D Mater., 1, 10.1088/2053-1583/1/2/025001

Das, 2014, Ambipolar phosphorene field effect transistor, ACS Nano, 8, 11730, 10.1021/nn505868h

Tang, 2018, Electronic properties of van der Waals heterostructure of black phosphorus and MoS2, J. Phys. Chem. C, 122, 7027, 10.1021/acs.jpcc.8b01476

Constantinescu, 2016, Multipurpose black-phosphorus/hBN heterostructures, Nano Lett., 16, 2586, 10.1021/acs.nanolett.6b00154

Zhao, 2017, Charge Carrier transfer in tungsten isulfide-black phosphorus heterostructures, Nanotechnology, 28, 475705, 10.1088/1361-6528/aa8f8d

Ye, 2017, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure, Nano Energy, 37, 53, 10.1016/j.nanoen.2017.05.004

Liu, 2017, Integrated flexible black phosphorus complementary inverter circuits, ACS Nano, 11, 7416, 10.1021/acsnano.7b03703

Buscema, 2014, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett., 14, 3347, 10.1021/nl5008085

Wang, 2014, Black phosphorus radio-frequency transistors, Nano Lett., 14, 6424, 10.1021/nl5029717

Li, 2016, Quantum Hall effect in black phosphorus two-dimensional electron system, Nat. Nanotechnol., 11, 593, 10.1038/nnano.2016.42

Evans, 2004, Coherent anti-Stokes Raman scattering spectral interferometry:determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy, Opt. Lett., 29, 2923, 10.1364/OL.29.002923

Zeng, 2012, Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films, Phys. Rev. B, 86, 10.1103/PhysRevB.86.241301

Tan, 2012, The shear mode of multilayer graphene, Nature Mater, 11, 294, 10.1038/nmat3245

Ling, 2015, Low-frequency interlayer breathing modes in few-layer black phosphorus, Nano Lett., 15, 4080, 10.1021/acs.nanolett.5b01117

Wu, 2015, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy, Angew. Chem. Int. Ed., 127, 2396, 10.1002/ange.201410108

Ling, 2016, Anisotropic electron-photon and electron-phonon interactions in black phosphorus, Nano Lett., 16, 2260, 10.1021/acs.nanolett.5b04540

Wang, 2015, Highly anisotropic and robust excitons in monolayer black phosphorus, Nat. Nanotechnol., 10, 517, 10.1038/nnano.2015.71

Qin, 2014, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance, Sci. Rep., 4, 6946, 10.1038/srep06946

Mao, 2016, Optical anisotropy of black phosphorus in the visible regime, J. Am. Chem. Soc., 138, 300, 10.1021/jacs.5b10685

Yuan, 2015, Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction, Nat. Nanotechnol., 10, 707, 10.1038/nnano.2015.112

Kim, 2015, Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus, Nanoscale, 7, 18708, 10.1039/C5NR04349B

Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotechnol., 12, 21, 10.1038/nnano.2016.171

Lan, 2016, Visualizing optical phase Anisotropy in black phosphorus, ACS Photonics, 3, 1176, 10.1021/acsphotonics.6b00320

Li, 2015, Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation, Sci. Rep., 5, 15899, 10.1038/srep15899

Rudenko, 2014, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B, 89, 10.1103/PhysRevB.89.201408

Pei, 2016, Producing air-stable monolayers of phosphorene and their defect engineering, Nat. Commun., 7, 10450, 10.1038/ncomms10450

Surrente, 2016, Excitons in atomically thin black phosphorus, Phys. Rev. B, 93, 10.1103/PhysRevB.93.121405

Zhu, 2015, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator, Nano Lett., 15, 1883, 10.1021/nl5047329

Li, 2015, Synthesis of thin-film black phosphorus on a flexible substrate, 2D Mater., 2, 10.1088/2053-1583/2/3/031002

Zhu, 2016, Black phosphorus flexible thin film transistors at gighertz frequencies, Nano Lett., 16, 2301, 10.1021/acs.nanolett.5b04768

Fischetti, 1996, Band structure, deformation potentials, and Carrier mobility in strained Si, Ge, and SiGe alloys, J. Appl. Phys., 80, 2234, 10.1063/1.363052

Kato, 2004, Coherent spin manipulation without magnetic fields in strained semiconductors, Nature, 427, 50, 10.1038/nature02202

Peng, 2014, Strain-Engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene, Phys. Rev. B, 90, 10.1103/PhysRevB.90.085402

Fei, 2014, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett., 14, 2884, 10.1021/nl500935z

Ong, 2014, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene, J. Phys. Chem. C, 118, 25272, 10.1021/jp5079357

Jiang, 2014, Mechanical properties of single-layer black phosphorus, J. Phys. D Appl. Phys., 47, 385304, 10.1088/0022-3727/47/38/385304

Tao, 2015, Mechanical and electrical anisotropy of few layer black phosphorus, ACS Nano, 9, 11362, 10.1021/acsnano.5b05151

Fei, 2014, Lattice vibrational modes and Raman scattering spectra of strained phosphorene, Appl. Phys. Lett., 105, 10.1063/1.4894273

Rodin, 2014, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett., 112, 176801, 10.1103/PhysRevLett.112.176801

Quereda, 2016, Strong modulation of optical properties in black phosphorus through strain-engineered rippling, Nano Lett., 16, 2931, 10.1021/acs.nanolett.5b04670

Akahama, 1987, Meliting curve of black phosphorus, Phys. Lett., 122, 129, 10.1016/0375-9601(87)90790-0

Liu, 2015, In situ thermal decomposition of exfoliated two-dimensional black phosphorus, J. Phys. Chem. Lett., 6, 773, 10.1021/acs.jpclett.5b00043

Lee, 2015, Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K, Nat. Commun., 6, 8573, 10.1038/ncomms9573

Luo, 2015, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus, Nat. Commun., 6, 8572, 10.1038/ncomms9572

Jang, 2015, Anisotropic thermal conductivity of exfoliated black phosphorus, Adv. Mater., 27, 8017, 10.1002/adma.201503466

Wang, 2016, Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus, Appl. Phys. Lett., 108

Wang, 2018, Characterization of anisotropic thermal conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy, J. Appl. Phys., 123, 145104, 10.1063/1.5023800

Chen, 2017, Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics, Nano Lett., 17, 985, 10.1021/acs.nanolett.6b04332

Xu, 2017, Black phosphorus mid-infrared photodetectors, Appl. Phys. B, 123, 10.1007/s00340-017-6698-7

Bridgman, 1914, Two new modifications of phosphorus, J. Am. Chem. Soc., 36, 1344, 10.1021/ja02184a002

Jacobs, 1937, Phosphorus at high temperatures and pressures, J. Chem. Phys., 5, 945, 10.1063/1.1749968

Krebs, 1955, Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors, Z. Anorg. Allg. Chem., 280, 119, 10.1002/zaac.19552800110

Maruyama, 1981, Synthesis and some properties of black phosphorus single crystals, Phys. B+C, 105, 99, 10.1016/0378-4363(81)90223-0

Maruyama, 1991, Electrical conductivity of black phosphorous-germanium compound, Synth. Met., 43, 4067, 10.1016/0379-6779(91)91747-X

Lange, 2007, Au3SnP7@Black Phosphorus:  an easy access to black phosphorus, Inorg. Chem., 46, 4028, 10.1021/ic062192q

Köpf, 2014, Access and in situ growth of phosphorene-precursor black phosphorus, J. Cryst. Growth, 405, 6, 10.1016/j.jcrysgro.2014.07.029

Castellanos Gomez, 2014, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., 1, 10.1088/2053-1583/1/1/011002

Zhang, 2015, Black phosphorus quantum dots, Angew. Chem., 54, 3653, 10.1002/anie.201409400

Bacon, 2014, Graphene quantum dots, Part. Part. Syst. Char., 31, 415, 10.1002/ppsc.201300252

Brent, 2014, Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Commun., 50, 13338, 10.1039/C4CC05752J

Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem. Int. Ed., 54, 11526, 10.1002/anie.201506154

Xu, 2016, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots, Adv. Opt. Mater., 4, 1223, 10.1002/adom.201600214

Kang, 2015, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus, ACS Nano, 9, 3596, 10.1021/acsnano.5b01143

Ren, 2017, Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater., 7, 1700396, 10.1002/aenm.201700396

Yasaei, 2015, High-quality black phosphorus atomic layers by liquid-phase exfoliation, Adv. Mater., 27, 1887, 10.1002/adma.201405150

Hanlon, 2015, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun., 6, 8563, 10.1038/ncomms9563

Kang, 2016, Stable aqueous dispersions of optically and electronically active phosphorene, Proc. Natl. Acad. Sci. U.S.A., 113, 11688, 10.1073/pnas.1602215113

Zhao, 2015, Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids, ACS Appl. Mater. Interfaces, 7, 27608, 10.1021/acsami.5b10734

Erande, 2016, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets, ACS Appl. Mater. Interfaces, 8, 11548, 10.1021/acsami.5b10247

Liu, 2016, Solvo-thermal microwave-powered two-dimensional material exfoliation, Chem. Commun., 52, 5757, 10.1039/C5CC10546C

Zhu, 2016, Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing, Chem. Eur J., 22, 7357, 10.1002/chem.201600719

Lu, 2014, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization, Nano Res., 7, 853, 10.1007/s12274-014-0446-7

Li, 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312, 10.1126/science.1171245

Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798

Yang, 2015, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater., 27, 3748, 10.1002/adma.201500990

Zhang, 2016, Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries, Adv. Energy Mater., 6, 1502409, 10.1002/aenm.201502409

Lin, 2018, Enhancement of photo-electrochemical reactions in MAPbI3/Au, Mater. Today Energy, 9, 303, 10.1016/j.mtener.2018.06.006

Jacoby, 2016, The future of low-cost solar cells, Chem. Eng. News, 94, 30

Dai, 2014, Bilayer phosphorene: effect of stacking order on bandgap and its pote ntial applications in thin-film solar cells, J. Phys. Chem. Lett., 5, 1289, 10.1021/jz500409m

Hu, 2016, Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells, Nano Lett., 16, 1675, 10.1021/acs.nanolett.5b04593

Batmunkh, 2018, Black phosphorus: synthesis and application for solar cells, Adv. Energy Mater., 8, 1701832, 10.1002/aenm.201701832

Guo, 2014, Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers, J. Phys. Chem. C, 118, 14051, 10.1021/jp505257g

Bai, 2017, Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells, J. Mater. Chem. A, 5, 8280, 10.1039/C6TA08140A

Chen, 2017, Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells, J. Phys. Chem. Lett., 8, 591, 10.1021/acs.jpclett.6b02843

Fu, 2018, Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells, J. Mater. Chem. A, 6, 8886, 10.1039/C8TA01408F

Ravelli, 2009, A multi-faceted concept for green chemistry, Chem. Soc. Rev., 38, 1999, 10.1039/b714786b

Rahman, 2016, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications, Energy Environ. Sci., 9, 709, 10.1039/C5EE03732H

Tachibana, 2012, Artificial photosynthesis for solar water-splitting, Nat. Photon., 6, 511, 10.1038/nphoton.2012.175

Hisatomi, 2014, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 38, 10.1038/238037a0

Hu, 2016, Band gap engineering in a 2D material for solar-to-chemical energy conversion, Nano Lett., 16, 74, 10.1021/acs.nanolett.5b02895

Zhu, 2017, Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution, Adv. Mater., 29, 1605776, 10.1002/adma.201605776

Kou, 2015, Fabrication, properties, and applications, J. Phys. Chem. Lett., 6, 2794, 10.1021/acs.jpclett.5b01094

Ding, 2016, Electronic properties of red and black phosphorous and their potential application as photocatalysts, RSC Adv., 6, 80872, 10.1039/C6RA10907A

Woomer, 2015, Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy, ACS Nano, 9, 8869, 10.1021/acsnano.5b02599

Sa, 2014, Strain engineering for phosphorene: the potential application as a photocatalyst, J. Phys. Chem. C, 118, 26560, 10.1021/jp508618t

Uk Lee, 2015, Sci. Rep., 5, 8691, 10.1038/srep08691

Zhu, 2018, Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light, Angew. Chem. Int. Ed., 57, 2160, 10.1002/anie.201711357

Zhu, 2017, Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution, Appl. Catal. B Environ., 217, 285, 10.1016/j.apcatb.2017.06.002

Zaffran, 2017, Understanding the oxygen evolution reaction on a two-dimensional NiO2 catalyst, ChemElectroChem, 4, 2764, 10.1002/celc.201700445

McKone, 2014, Earth-abundant hydrogen evolution electrocatalysts, Chem. Sci., 5, 865, 10.1039/C3SC51711J

Lee, 2012, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507

Yan, 2017, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions, Adv. Mater., 29, 1606459, 10.1002/adma.201606459

Wang, 2018, In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis, Angew. Chem. Int. Ed., 57, 2600, 10.1002/anie.201710859

Spöeri, 2017, The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chem. Int. Ed., 56, 5994, 10.1002/anie.201608601

Jiang, 2016, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. Int. Ed., 55, 13849, 10.1002/anie.201607393

Morales-Guio, 2014, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C

Jiao, 2015, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A

He, 2017, Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution, Nano Lett., 17, 4311, 10.1021/acs.nanolett.7b01334

Lin, 2017, J. Zhang. In-situ grown of Ni2P nanoparticles on 2D black phosphorus as a novel hybrid catalyst for hydrogen evolution, Int. J. Hydrogen Energy, 42, 7951, 10.1016/j.ijhydene.2016.12.030

Pan, 2016, Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution, J. Mater. Chem. A, 4, 14675, 10.1039/C6TA06975D

Nielsch, 2011, Thermoelectric nanostructures: from physical model systems towards nanograined composites, Adv. Energy Mater., 1, 713, 10.1002/aenm.201100207

Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012

Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886

Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064

Minnich, 2015, Phonon heat conduction in layered anisotropic crystals, Phys. Rev. B, 91, 10.1103/PhysRevB.91.085206

Carvalho, 2016, From theory to applications, Nat. Rev. Mater., 1, 16061, 10.1038/natrevmats.2016.61

Tran, 2017, Surface transport and quantum Hall effect in ambipolar black phosphorus double quantum wells, Sci. Adv., 3, e1603179, 10.1126/sciadv.1603179

Lin, 2014, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process, Adv. Mater., 26, 4690, 10.1002/adma.201400373

Pu, 2015, A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics, Adv. Mater., 27, 2472, 10.1002/adma.201500311

Yu, 2016, Phosphorene-based nanogenerator powered by cyclic molecular doping, Nano Energy, 23, 34, 10.1016/j.nanoen.2016.03.010

Muralidharan, 2017, Ultralow frequency electrochemical-mechanical strain energy harvester using 2D black phosphorus nanosheets, ACS Energy Lett, 2, 1797, 10.1021/acsenergylett.7b00478

Koka, 2014, Vertically aligned BaTiO3 nanowire arrays for energy harvesting, Energy Environ. Sci., 7, 288, 10.1039/C3EE42540A

Xu, 2010, Self-Powered nanowire devices, Nat. Nanotechnol., 5, 366, 10.1038/nnano.2010.46

Zi, 2016, Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator, ACS Nano, 10, 4797, 10.1021/acsnano.6b01569

Fic, 2018, Sustainable materials for electrochemical capacitors, Mater. Today, 21, 437, 10.1016/j.mattod.2018.03.005

McCollum, 2018, Energy investment needs for fulfilling the paris agreement and achieving the sustainable development, Goals. Nat. Energy, 3, 589, 10.1038/s41560-018-0179-z

Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741

Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7, 845, 10.1038/nmat2297

Kravchyk, 2013, Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes, J. Am. Chem. Soc., 135, 4199, 10.1021/ja312604r

Zhou, 2017, A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte, J. Mater. Chem. A, 5, 9350, 10.1039/C7TA01564J

He, 2014, Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk, Nano Lett., 14, 1255, 10.1021/nl404165c

Qian, 2018, Kinetically controlled redox behaviors of K0.3MnO2 electrodes for high performance sodium-ion batteries, J. Mater. Chem. A, 6, 10803, 10.1039/C8TA03543A

Cohn, 2017, Anode-free sodium battery through in situ plating of sodium metal, Nano Lett., 17, 1296, 10.1021/acs.nanolett.6b05174

Qian, 2018, MnSe2 nanocubes as an anode material for sodium-ion batteries, Mater. Today Energy, 10, 62, 10.1016/j.mtener.2018.08.009

Stan, 2013, Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries, J. Mater. Chem. A, 1, 5293, 10.1039/c3ta10380c

Park, 2007, Black phosphorus and its composite for lithium rechargeable batteries, Adv. Mater., 19, 2465, 10.1002/adma.200602592

Luo, 2017, Multifunctional 0d–2d Ni2P nanocrystals–black phosphorus heterostructure, Adv. Energy Mater., 7, 1601285, 10.1002/aenm.201601285

Pan, 2016, Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage, Nano Energy, 30, 347, 10.1016/j.nanoen.2016.10.019

Xu, 2016, Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries, Nano Lett., 16, 3955, 10.1021/acs.nanolett.6b01777

Guo, 2015, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries, J. Phys. Chem. Lett., 6, 5002, 10.1021/acs.jpclett.5b02513

Chen, 2016, Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery, Adv. Mater., 28, 510, 10.1002/adma.201503678

Sun, 2014, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes, Nano Lett., 14, 4573, 10.1021/nl501617j

Sultana, 2017, High capacity potassium-ion battery anodes based on black phosphorus, J. Mater. Chem. A, 5, 23506, 10.1039/C7TA02483E

Komaba, 2015, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors, Electrochem. Commun., 60, 172, 10.1016/j.elecom.2015.09.002

Share, 2016, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes, ACS Nano, 10, 9738, 10.1021/acsnano.6b05998

Jin, 2016, Monolayer black phosphorus as potential anode materials for Mg-ion batteries, J. Mater. Sci., 51, 7355, 10.1007/s10853-016-0023-4

Manthiram, 2014, Rechargeable lithium–sulfur batteries, Chem. Rev., 114, 11751, 10.1021/cr500062v

Li, 2017, Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries, Adv. Mater., 29, 1602734, 10.1002/adma.201602734

Sun, 2016, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries, Adv. Mater., 28, 9797, 10.1002/adma.201602172

Xu, 2018, Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries, Nat. Commun., 9, 4164, 10.1038/s41467-018-06629-9

Ramireddy, 2015, Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries, J. Mater. Chem. A, 3, 5572, 10.1039/C4TA06186A

Dahbi, 2016, Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface, Chem. Mater., 28, 1625, 10.1021/acs.chemmater.5b03524

Zhang, 2016, An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties, Adv. Energy Mater., 6, 1600453, 10.1002/aenm.201600453

Miller, 2008, Electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736

Qian, 2013, A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage, Chem. Commun., 49, 3043, 10.1039/c3cc41113c

Liu, 2015, Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A, 3, 11517, 10.1039/C5TA02224J

Nagao, 2011, All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources, 196, 6902, 10.1016/j.jpowsour.2010.12.055

Meng, 2011, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities, Adv. Mater., 23, 4098, 10.1002/adma.201101678

El-Kady, 2012, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326, 10.1126/science.1216744