Emerging opportunities for black phosphorus in energy applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Qiu, 2017, Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale, 9, 13384, 10.1039/C7NR03318D
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Feng, 2012, Strain-engineered artificial atom as a broad-spectrum solar energy funnel, Nat. Photon., 6, 866, 10.1038/nphoton.2012.285
Fontana, 2013, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions, Sci. Rep., 3, 1634, 10.1038/srep01634
Bernardi, 2013, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett., 13, 3664, 10.1021/nl401544y
Lee, 2012, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett., 12, 3695, 10.1021/nl301485q
Ye, 2013, Exciton-related electroluminescence from monolayer MoS2, arXiv, 1305, 4235
Li, 2016, Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production, J. Am. Chem. Soc., 138, 7681, 10.1021/jacs.6b03472
Zeng, 2018, Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction, Adv. Funct. Mater., 28, 1705970, 10.1002/adfm.201705970
Zeng, 2018, Ultrafast and sensitive photodetector based on PtSe2/silicon nanowire array heterojunction with multiband spectral response from 200 to 1550 nm, NPG Asia Mater., 10, 352, 10.1038/s41427-018-0035-4
Lin, 2017, Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction, Nano Energy, 42, 26, 10.1016/j.nanoen.2017.10.038
Yin, 2018, A low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cell, J. Mater. Chem., 6, 9132, 10.1039/C8TA01143E
Yuan, 2018, Wafer-scale fabrication of 2D van der Waals heterojunctions for efficient and broadband photodetection, ACS Appl. Mater. Interfaces, 10, 40614, 10.1021/acsami.8b13620
Tan, 2016, Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes, ACS Nano, 10, 7866, 10.1021/acsnano.6b03722
Huang, 2014, Large-area synthesis of highly crystalline WSe2 monolayers and device applications, ACS Nano, 8, 923, 10.1021/nn405719x
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Lin, 2017, In situ observation of the thermal stability of black phosphorus, 2D Mater., 4, 10.1088/2053-1583/aa55b2
Lin, 2016, Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics, Adv. Funct. Mater., 26, 864, 10.1002/adfm.201503273
Tran, 2014, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys. Rev. B, 89, 235319, 10.1103/PhysRevB.89.235319
Guo, 2016, Black phosphorus mid-infrared photodetectors with high gain, Nano Lett., 16, 4648, 10.1021/acs.nanolett.6b01977
Mayorga-Martinez, 2015, Layered black phosphorus as a selective vapor sensor, Angew. Chem., 127, 14525, 10.1002/ange.201505015
Lu, 2015, Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material, Optic Express, 23, 11183, 10.1364/OE.23.011183
Liu, 2017, Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics, Angew. Chem., 56, 13717, 10.1002/anie.201707510
Yang, 2016, Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells, Adv. Mater., 28, 8937, 10.1002/adma.201602382
Zhu, 2017, Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride, J. Am. Chem. Soc., 139, 13234, 10.1021/jacs.7b08416
Tian, 2018, Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K, Nat. Commun., 9, 1397, 10.1038/s41467-018-03737-4
Saito, 2016, Gate-tuned thermoelectric power in black phosphorus, Nano Lett., 16, 4819, 10.1021/acs.nanolett.6b00999
Li, 2017, Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy, ACS Appl. Mater. Interfaces, 9, 25098, 10.1021/acsami.7b05824
Gao, 2018, Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus, Adv. Mater., 30, 1705088, 10.1002/adma.201705088
Hao, 2016, Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes, Adv. Mater., 28, 3194, 10.1002/adma.201505730
Sun, 2015, A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries, Nat. Nanotechnol., 10, 980, 10.1038/nnano.2015.194
Liu, 2017, Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery, ACS Appl. Mater. Interfaces, 9, 36849, 10.1021/acsami.7b11599
Favron, 2015, Photooxidation and quantum confinement effects in exfoliated black phosphorus, Nat. Mater., 14, 826, 10.1038/nmat4299
Abellan, 2017, Fundamental insights into the degradation and stabilization of thin layer black phosphorus, J. Am. Chem. Soc., 139, 10432, 10.1021/jacs.7b04971
Wood, 2014, Effective passivation of exfoliated black phosphorus transistors against ambient degradation, Nano Lett., 14, 6964, 10.1021/nl5032293
Zhao, 2016, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed., 55, 5003, 10.1002/anie.201512038
Guo, 2017, Metal-ion-modified black phosphorus with enhanced stability and transistor performance, Adv. Mater., 29, 1703811, 10.1002/adma.201703811
Ryder, 2016, Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry, Nat. Chem., 8, 597, 10.1038/nchem.2505
Smith, 2016, Growth of 2D black phosphorus film from chemical vapor deposition, Nanotechnology, 27, 215602, 10.1088/0957-4484/27/21/215602
Li, 2018, Synthesis of crystalline black phosphorus thin film on sapphire, Adv. Mater., 30
Liu, 2015, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A
Lu, 2016, Light–matter interactions in phosphorene, Acc. Chem. Res., 49, 1806, 10.1021/acs.accounts.6b00266
Lin, 2017, Liquid-phase exfoliation of black phosphorus and its applications, FlatChem, 2, 15, 10.1016/j.flatc.2017.03.001
Xia, 2014, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun., 5, 4458, 10.1038/ncomms5458
Li, 2017, Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain, Adv. Funct. Mater., 27, 1600986, 10.1002/adfm.201600986
Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475
Liang, 2014, Electronic bandgap and edge reconstruction in phosphorene materials, Nano Lett., 14, 6400, 10.1021/nl502892t
Yang, 2015, Optical tuning of exciton and trion emissions in monolayer phosphorene, Light Sci. Appl., 4, e312, 10.1038/lsa.2015.85
Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w
Koenig, 2014, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett., 104, 103106, 10.1063/1.4868132
Liu, 2014, An unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Castellanos-Gomez, 2014, Isolation and characterization of few-layer black phosphorus, 2D Mater., 1, 10.1088/2053-1583/1/2/025001
Tang, 2018, Electronic properties of van der Waals heterostructure of black phosphorus and MoS2, J. Phys. Chem. C, 122, 7027, 10.1021/acs.jpcc.8b01476
Constantinescu, 2016, Multipurpose black-phosphorus/hBN heterostructures, Nano Lett., 16, 2586, 10.1021/acs.nanolett.6b00154
Zhao, 2017, Charge Carrier transfer in tungsten isulfide-black phosphorus heterostructures, Nanotechnology, 28, 475705, 10.1088/1361-6528/aa8f8d
Ye, 2017, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure, Nano Energy, 37, 53, 10.1016/j.nanoen.2017.05.004
Liu, 2017, Integrated flexible black phosphorus complementary inverter circuits, ACS Nano, 11, 7416, 10.1021/acsnano.7b03703
Buscema, 2014, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett., 14, 3347, 10.1021/nl5008085
Li, 2016, Quantum Hall effect in black phosphorus two-dimensional electron system, Nat. Nanotechnol., 11, 593, 10.1038/nnano.2016.42
Evans, 2004, Coherent anti-Stokes Raman scattering spectral interferometry:determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy, Opt. Lett., 29, 2923, 10.1364/OL.29.002923
Zeng, 2012, Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films, Phys. Rev. B, 86, 10.1103/PhysRevB.86.241301
Ling, 2015, Low-frequency interlayer breathing modes in few-layer black phosphorus, Nano Lett., 15, 4080, 10.1021/acs.nanolett.5b01117
Wu, 2015, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy, Angew. Chem. Int. Ed., 127, 2396, 10.1002/ange.201410108
Ling, 2016, Anisotropic electron-photon and electron-phonon interactions in black phosphorus, Nano Lett., 16, 2260, 10.1021/acs.nanolett.5b04540
Wang, 2015, Highly anisotropic and robust excitons in monolayer black phosphorus, Nat. Nanotechnol., 10, 517, 10.1038/nnano.2015.71
Qin, 2014, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance, Sci. Rep., 4, 6946, 10.1038/srep06946
Mao, 2016, Optical anisotropy of black phosphorus in the visible regime, J. Am. Chem. Soc., 138, 300, 10.1021/jacs.5b10685
Yuan, 2015, Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction, Nat. Nanotechnol., 10, 707, 10.1038/nnano.2015.112
Kim, 2015, Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus, Nanoscale, 7, 18708, 10.1039/C5NR04349B
Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotechnol., 12, 21, 10.1038/nnano.2016.171
Lan, 2016, Visualizing optical phase Anisotropy in black phosphorus, ACS Photonics, 3, 1176, 10.1021/acsphotonics.6b00320
Li, 2015, Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation, Sci. Rep., 5, 15899, 10.1038/srep15899
Rudenko, 2014, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B, 89, 10.1103/PhysRevB.89.201408
Pei, 2016, Producing air-stable monolayers of phosphorene and their defect engineering, Nat. Commun., 7, 10450, 10.1038/ncomms10450
Surrente, 2016, Excitons in atomically thin black phosphorus, Phys. Rev. B, 93, 10.1103/PhysRevB.93.121405
Zhu, 2015, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator, Nano Lett., 15, 1883, 10.1021/nl5047329
Li, 2015, Synthesis of thin-film black phosphorus on a flexible substrate, 2D Mater., 2, 10.1088/2053-1583/2/3/031002
Zhu, 2016, Black phosphorus flexible thin film transistors at gighertz frequencies, Nano Lett., 16, 2301, 10.1021/acs.nanolett.5b04768
Fischetti, 1996, Band structure, deformation potentials, and Carrier mobility in strained Si, Ge, and SiGe alloys, J. Appl. Phys., 80, 2234, 10.1063/1.363052
Kato, 2004, Coherent spin manipulation without magnetic fields in strained semiconductors, Nature, 427, 50, 10.1038/nature02202
Peng, 2014, Strain-Engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene, Phys. Rev. B, 90, 10.1103/PhysRevB.90.085402
Fei, 2014, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett., 14, 2884, 10.1021/nl500935z
Ong, 2014, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene, J. Phys. Chem. C, 118, 25272, 10.1021/jp5079357
Jiang, 2014, Mechanical properties of single-layer black phosphorus, J. Phys. D Appl. Phys., 47, 385304, 10.1088/0022-3727/47/38/385304
Tao, 2015, Mechanical and electrical anisotropy of few layer black phosphorus, ACS Nano, 9, 11362, 10.1021/acsnano.5b05151
Fei, 2014, Lattice vibrational modes and Raman scattering spectra of strained phosphorene, Appl. Phys. Lett., 105, 10.1063/1.4894273
Rodin, 2014, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett., 112, 176801, 10.1103/PhysRevLett.112.176801
Quereda, 2016, Strong modulation of optical properties in black phosphorus through strain-engineered rippling, Nano Lett., 16, 2931, 10.1021/acs.nanolett.5b04670
Akahama, 1987, Meliting curve of black phosphorus, Phys. Lett., 122, 129, 10.1016/0375-9601(87)90790-0
Liu, 2015, In situ thermal decomposition of exfoliated two-dimensional black phosphorus, J. Phys. Chem. Lett., 6, 773, 10.1021/acs.jpclett.5b00043
Lee, 2015, Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K, Nat. Commun., 6, 8573, 10.1038/ncomms9573
Luo, 2015, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus, Nat. Commun., 6, 8572, 10.1038/ncomms9572
Jang, 2015, Anisotropic thermal conductivity of exfoliated black phosphorus, Adv. Mater., 27, 8017, 10.1002/adma.201503466
Wang, 2016, Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus, Appl. Phys. Lett., 108
Wang, 2018, Characterization of anisotropic thermal conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy, J. Appl. Phys., 123, 145104, 10.1063/1.5023800
Chen, 2017, Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics, Nano Lett., 17, 985, 10.1021/acs.nanolett.6b04332
Xu, 2017, Black phosphorus mid-infrared photodetectors, Appl. Phys. B, 123, 10.1007/s00340-017-6698-7
Bridgman, 1914, Two new modifications of phosphorus, J. Am. Chem. Soc., 36, 1344, 10.1021/ja02184a002
Jacobs, 1937, Phosphorus at high temperatures and pressures, J. Chem. Phys., 5, 945, 10.1063/1.1749968
Krebs, 1955, Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors, Z. Anorg. Allg. Chem., 280, 119, 10.1002/zaac.19552800110
Maruyama, 1981, Synthesis and some properties of black phosphorus single crystals, Phys. B+C, 105, 99, 10.1016/0378-4363(81)90223-0
Maruyama, 1991, Electrical conductivity of black phosphorous-germanium compound, Synth. Met., 43, 4067, 10.1016/0379-6779(91)91747-X
Lange, 2007, Au3SnP7@Black Phosphorus: an easy access to black phosphorus, Inorg. Chem., 46, 4028, 10.1021/ic062192q
Köpf, 2014, Access and in situ growth of phosphorene-precursor black phosphorus, J. Cryst. Growth, 405, 6, 10.1016/j.jcrysgro.2014.07.029
Castellanos Gomez, 2014, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., 1, 10.1088/2053-1583/1/1/011002
Brent, 2014, Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Commun., 50, 13338, 10.1039/C4CC05752J
Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem. Int. Ed., 54, 11526, 10.1002/anie.201506154
Xu, 2016, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots, Adv. Opt. Mater., 4, 1223, 10.1002/adom.201600214
Kang, 2015, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus, ACS Nano, 9, 3596, 10.1021/acsnano.5b01143
Ren, 2017, Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction, Adv. Energy Mater., 7, 1700396, 10.1002/aenm.201700396
Yasaei, 2015, High-quality black phosphorus atomic layers by liquid-phase exfoliation, Adv. Mater., 27, 1887, 10.1002/adma.201405150
Hanlon, 2015, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun., 6, 8563, 10.1038/ncomms9563
Kang, 2016, Stable aqueous dispersions of optically and electronically active phosphorene, Proc. Natl. Acad. Sci. U.S.A., 113, 11688, 10.1073/pnas.1602215113
Zhao, 2015, Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids, ACS Appl. Mater. Interfaces, 7, 27608, 10.1021/acsami.5b10734
Erande, 2016, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets, ACS Appl. Mater. Interfaces, 8, 11548, 10.1021/acsami.5b10247
Liu, 2016, Solvo-thermal microwave-powered two-dimensional material exfoliation, Chem. Commun., 52, 5757, 10.1039/C5CC10546C
Zhu, 2016, Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing, Chem. Eur J., 22, 7357, 10.1002/chem.201600719
Lu, 2014, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization, Nano Res., 7, 853, 10.1007/s12274-014-0446-7
Li, 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312, 10.1126/science.1171245
Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798
Yang, 2015, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater., 27, 3748, 10.1002/adma.201500990
Zhang, 2016, Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries, Adv. Energy Mater., 6, 1502409, 10.1002/aenm.201502409
Lin, 2018, Enhancement of photo-electrochemical reactions in MAPbI3/Au, Mater. Today Energy, 9, 303, 10.1016/j.mtener.2018.06.006
Jacoby, 2016, The future of low-cost solar cells, Chem. Eng. News, 94, 30
Dai, 2014, Bilayer phosphorene: effect of stacking order on bandgap and its pote ntial applications in thin-film solar cells, J. Phys. Chem. Lett., 5, 1289, 10.1021/jz500409m
Hu, 2016, Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells, Nano Lett., 16, 1675, 10.1021/acs.nanolett.5b04593
Batmunkh, 2018, Black phosphorus: synthesis and application for solar cells, Adv. Energy Mater., 8, 1701832, 10.1002/aenm.201701832
Guo, 2014, Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers, J. Phys. Chem. C, 118, 14051, 10.1021/jp505257g
Bai, 2017, Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells, J. Mater. Chem. A, 5, 8280, 10.1039/C6TA08140A
Chen, 2017, Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells, J. Phys. Chem. Lett., 8, 591, 10.1021/acs.jpclett.6b02843
Fu, 2018, Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells, J. Mater. Chem. A, 6, 8886, 10.1039/C8TA01408F
Ravelli, 2009, A multi-faceted concept for green chemistry, Chem. Soc. Rev., 38, 1999, 10.1039/b714786b
Rahman, 2016, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications, Energy Environ. Sci., 9, 709, 10.1039/C5EE03732H
Tachibana, 2012, Artificial photosynthesis for solar water-splitting, Nat. Photon., 6, 511, 10.1038/nphoton.2012.175
Hisatomi, 2014, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 38, 10.1038/238037a0
Hu, 2016, Band gap engineering in a 2D material for solar-to-chemical energy conversion, Nano Lett., 16, 74, 10.1021/acs.nanolett.5b02895
Zhu, 2017, Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution, Adv. Mater., 29, 1605776, 10.1002/adma.201605776
Kou, 2015, Fabrication, properties, and applications, J. Phys. Chem. Lett., 6, 2794, 10.1021/acs.jpclett.5b01094
Ding, 2016, Electronic properties of red and black phosphorous and their potential application as photocatalysts, RSC Adv., 6, 80872, 10.1039/C6RA10907A
Woomer, 2015, Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy, ACS Nano, 9, 8869, 10.1021/acsnano.5b02599
Sa, 2014, Strain engineering for phosphorene: the potential application as a photocatalyst, J. Phys. Chem. C, 118, 26560, 10.1021/jp508618t
Zhu, 2018, Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light, Angew. Chem. Int. Ed., 57, 2160, 10.1002/anie.201711357
Zhu, 2017, Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution, Appl. Catal. B Environ., 217, 285, 10.1016/j.apcatb.2017.06.002
Zaffran, 2017, Understanding the oxygen evolution reaction on a two-dimensional NiO2 catalyst, ChemElectroChem, 4, 2764, 10.1002/celc.201700445
McKone, 2014, Earth-abundant hydrogen evolution electrocatalysts, Chem. Sci., 5, 865, 10.1039/C3SC51711J
Lee, 2012, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507
Yan, 2017, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions, Adv. Mater., 29, 1606459, 10.1002/adma.201606459
Wang, 2018, In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis, Angew. Chem. Int. Ed., 57, 2600, 10.1002/anie.201710859
Spöeri, 2017, The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chem. Int. Ed., 56, 5994, 10.1002/anie.201608601
Jiang, 2016, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction, Angew. Chem. Int. Ed., 55, 13849, 10.1002/anie.201607393
Morales-Guio, 2014, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C
Jiao, 2015, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A
He, 2017, Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution, Nano Lett., 17, 4311, 10.1021/acs.nanolett.7b01334
Lin, 2017, J. Zhang. In-situ grown of Ni2P nanoparticles on 2D black phosphorus as a novel hybrid catalyst for hydrogen evolution, Int. J. Hydrogen Energy, 42, 7951, 10.1016/j.ijhydene.2016.12.030
Pan, 2016, Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution, J. Mater. Chem. A, 4, 14675, 10.1039/C6TA06975D
Nielsch, 2011, Thermoelectric nanostructures: from physical model systems towards nanograined composites, Adv. Energy Mater., 1, 713, 10.1002/aenm.201100207
Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012
Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886
Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064
Minnich, 2015, Phonon heat conduction in layered anisotropic crystals, Phys. Rev. B, 91, 10.1103/PhysRevB.91.085206
Tran, 2017, Surface transport and quantum Hall effect in ambipolar black phosphorus double quantum wells, Sci. Adv., 3, e1603179, 10.1126/sciadv.1603179
Lin, 2014, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process, Adv. Mater., 26, 4690, 10.1002/adma.201400373
Pu, 2015, A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics, Adv. Mater., 27, 2472, 10.1002/adma.201500311
Yu, 2016, Phosphorene-based nanogenerator powered by cyclic molecular doping, Nano Energy, 23, 34, 10.1016/j.nanoen.2016.03.010
Muralidharan, 2017, Ultralow frequency electrochemical-mechanical strain energy harvester using 2D black phosphorus nanosheets, ACS Energy Lett, 2, 1797, 10.1021/acsenergylett.7b00478
Koka, 2014, Vertically aligned BaTiO3 nanowire arrays for energy harvesting, Energy Environ. Sci., 7, 288, 10.1039/C3EE42540A
Zi, 2016, Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator, ACS Nano, 10, 4797, 10.1021/acsnano.6b01569
Fic, 2018, Sustainable materials for electrochemical capacitors, Mater. Today, 21, 437, 10.1016/j.mattod.2018.03.005
McCollum, 2018, Energy investment needs for fulfilling the paris agreement and achieving the sustainable development, Goals. Nat. Energy, 3, 589, 10.1038/s41560-018-0179-z
Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741
Kravchyk, 2013, Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes, J. Am. Chem. Soc., 135, 4199, 10.1021/ja312604r
Zhou, 2017, A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte, J. Mater. Chem. A, 5, 9350, 10.1039/C7TA01564J
He, 2014, Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk, Nano Lett., 14, 1255, 10.1021/nl404165c
Qian, 2018, Kinetically controlled redox behaviors of K0.3MnO2 electrodes for high performance sodium-ion batteries, J. Mater. Chem. A, 6, 10803, 10.1039/C8TA03543A
Cohn, 2017, Anode-free sodium battery through in situ plating of sodium metal, Nano Lett., 17, 1296, 10.1021/acs.nanolett.6b05174
Qian, 2018, MnSe2 nanocubes as an anode material for sodium-ion batteries, Mater. Today Energy, 10, 62, 10.1016/j.mtener.2018.08.009
Stan, 2013, Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries, J. Mater. Chem. A, 1, 5293, 10.1039/c3ta10380c
Park, 2007, Black phosphorus and its composite for lithium rechargeable batteries, Adv. Mater., 19, 2465, 10.1002/adma.200602592
Luo, 2017, Multifunctional 0d–2d Ni2P nanocrystals–black phosphorus heterostructure, Adv. Energy Mater., 7, 1601285, 10.1002/aenm.201601285
Pan, 2016, Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage, Nano Energy, 30, 347, 10.1016/j.nanoen.2016.10.019
Xu, 2016, Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries, Nano Lett., 16, 3955, 10.1021/acs.nanolett.6b01777
Guo, 2015, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries, J. Phys. Chem. Lett., 6, 5002, 10.1021/acs.jpclett.5b02513
Chen, 2016, Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery, Adv. Mater., 28, 510, 10.1002/adma.201503678
Sun, 2014, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes, Nano Lett., 14, 4573, 10.1021/nl501617j
Sultana, 2017, High capacity potassium-ion battery anodes based on black phosphorus, J. Mater. Chem. A, 5, 23506, 10.1039/C7TA02483E
Komaba, 2015, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors, Electrochem. Commun., 60, 172, 10.1016/j.elecom.2015.09.002
Share, 2016, Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes, ACS Nano, 10, 9738, 10.1021/acsnano.6b05998
Jin, 2016, Monolayer black phosphorus as potential anode materials for Mg-ion batteries, J. Mater. Sci., 51, 7355, 10.1007/s10853-016-0023-4
Li, 2017, Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries, Adv. Mater., 29, 1602734, 10.1002/adma.201602734
Sun, 2016, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries, Adv. Mater., 28, 9797, 10.1002/adma.201602172
Xu, 2018, Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries, Nat. Commun., 9, 4164, 10.1038/s41467-018-06629-9
Ramireddy, 2015, Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries, J. Mater. Chem. A, 3, 5572, 10.1039/C4TA06186A
Dahbi, 2016, Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface, Chem. Mater., 28, 1625, 10.1021/acs.chemmater.5b03524
Zhang, 2016, An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties, Adv. Energy Mater., 6, 1600453, 10.1002/aenm.201600453
Miller, 2008, Electrochemical capacitors for energy management, Science, 321, 651, 10.1126/science.1158736
Qian, 2013, A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage, Chem. Commun., 49, 3043, 10.1039/c3cc41113c
Liu, 2015, Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A, 3, 11517, 10.1039/C5TA02224J
Nagao, 2011, All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources, 196, 6902, 10.1016/j.jpowsour.2010.12.055
Meng, 2011, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities, Adv. Mater., 23, 4098, 10.1002/adma.201101678