Emerging functional materials based on chemically designed molecular recognition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Frederick KK, Marlow MS, Valentine KG, Wand AJ. Conformational entropy in molecular recognition by proteins. Nature. 2007;448:325–9.
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed. 2015;54:3290–327.
Baron R, McCammon JA. Molecular recognition and ligand association. Annu Rev Phys Chem. 2013;64:151–75.
Barton NH, Briggs DE, Eisen JA, Goldstein DB, Patel NH, Evolution of novelty. Evolution. 2007; 695–724.
Subrahmanyam S, Piletsky SA, Turner AP. Application of natural receptors in sensors and assays. Anal Chem. 2002;74:3942–51.
Mahon CS, Fulton DA. Mimicking nature with synthetic macromolecules capable of recognition. Nat Chem. 2014;6:665–72.
Ruigrok VJ, Levisson M, Eppink MH, Smidt H, Van Der Oost J. Alternative affinity tools: more attractive than antibodies? Biochem J. 2011;436(1):1–13.
Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–7.
Loh XJ. Supramolecular host–guest polymeric materials for biomedical applications. Mater Horiz. 2014;1:185–95.
Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem Rev. 2014;115:7794–839.
Harada A, Takashima Y, Nakahata M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc Chem Res. 2014;47:2128–40.
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Rev: Chem. Soc; 2017.
Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115:12320–406.
Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F. A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem. 2011;123:1945–9.
Murray J, Kim K, Ogoshi T, Yao W, Gibb BC. The aqueous supramolecular chemistry of cucurbit [n] urils, pillar [n] arenes and deep-cavity cavitands. Chem Soc Rev. 2017;46:2479–96.
Schmidt B, Barner-Kowollik C. Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin Based Host/Guest Chemistry. Chem: Angew; 2017.
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev. 2015;44:8097–123.
Ariga K, Ito H, Hill JP, Tsukube H. Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev. 2012;41:5800–35.
Jin Y, Wang Q, Taynton P, Zhang W. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc Chem Res. 2014;47:1575–86.
Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Rev: Chem. Soc; 2018.
Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed. 1995;34:1812–32.
Hart BR, Shea KJ. Synthetic peptide receptors: molecularly imprinted polymers for the recognition of peptides using peptide − metal interactions. J Am Chem Soc. 2001;123:2072–3.
Ma Y, Pan G, Zhang Y, Guo X, Zhang H. Comparative study of the molecularly imprinted polymers prepared by reversible addition–fragmentation chain transfer “bulk” polymerization and traditional radical “bulk” polymerization. J Mol Recognit. 2013;26:240–51.
Wang J, Dai J, Xu Y, Dai X, Zhang Y, Shi W, Sellergren B, Pan G. Molecularly imprinted fluorescent test strip for direct, rapid, and visual dopamine detection in tiny amount of biofluid. Small. 2019;15:1803913.
Wang J, Qiu H, Shen H, Pan J, Dai X, Yan Y, Pan G, Sellergren B. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water. Biosens Bioelectron. 2016;85:387–94.
Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev. 2000;100:2495–504.
Wan L, Chen Z, Huang C, Shen X. Core–shell molecularly imprinted particles. Trends Anal Chem. 2017;95:110–21.
Wuff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemate. J Angew Chem Int Ed. 1972;11:341–5.
Sellergren B. Imprinted polymers with memory for small molecules, proteins, or crystals. Angew Chem Int Ed. 2000;39:1031–7.
Bossi A, Bonini F, Turner A, Piletsky S. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron. 2007;22:1131–7.
Pan G, Zhang Y, Ma Y, Li C, Zhang H. Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew Chem Int Ed. 2011;50:11731–4.
Gunasekara RW, Zhao Y. A general method for selective recognition of monosaccharides and oligosaccharides in water. J Am Chem Soc. 2017;139:829–35.
Liu S, Pan J, Zhu H, Pan G, Qiu F, Meng M, Yao J, Yuan D. Graphene oxide based molecularly imprinted polymers with double recognition abilities: the combination of covalent boronic acid and traditional non-covalent monomers. Chem Eng J. 2016;290:220–31.
Li R, Feng Y, Pan G, Liu L. Advances in molecularly imprinting technology for bioanalytical applications. Sensors. 2019;19:177.
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.
Yin Y, Pan J, Cao J, Ma Y, Pan G, Wu R, Dai X, Meng M, Yan Y. Rationally designed hybrid molecularly imprinted polymer foam for highly efficient λ-cyhalothrin recognition and uptake via twice imprinting strategy. Chem Eng J. 2016;286:485–96.
Rensing S, Arendt M, Springer A, Grawe T, Schrader T. Optimization of a synthetic arginine receptor systematic tuning of noncovalent interactions. J Org Chem. 2001;66(17):5814–21.
Whitby LR, Boger DL. Comprehensive peptidomimetic libraries targeting protein-protein interactions. Acc Chem Res. 2012;45:1698–709.
Hoshino Y, Haberaecker WW III, Kodama T, Zeng Z, Okahata Y, Shea KJ. Affinity purification of multifunctional polymer nanoparticles. J Am Chem Soc. 2010;132:13648–50.
Koch SJ, Renner C, Xie X, Schrader T. Tuning linear copolymers into protein-specific hosts. Angew Chem Int Ed. 2006;45:6352–5.
O’Brien J, Shea KJ. Tuning the protein corona of hydrogel nanoparticles: the synthesis of abiotic protein and peptide affinity reagents. Acc Chem Res. 2016;49:1200–10.
Zeng Z, Patel J, Lee S-H, McCallum M, Tyagi A, Yan M, Shea KJ. Synthetic polymer nanoparticle–polysaccharide interactions: a systematic study. J Am Chem Soc. 2012;134:2681–90.
Lee S-H, Hoshino Y, Randall A, Zeng Z, Baldi P, Doong R-A, Shea KJ. Engineered synthetic polymer nanoparticles as IgG affinity ligands. J Am Chem Soc. 2012;134:15765–72.
Wada Y, Lee H, Hoshino Y, Kotani S, Shea KJ, Miura Y. Design of multi-functional linear polymers that capture and neutralize a toxic peptide: a comparison with cross-linked nanoparticles. J Mater Chem B. 2015;3:1706–11.
Yoshimatsu K, Koide H, Hoshino Y, Shea KJ. Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin. Nat Protoc. 2015;10:595–604.
De Sterck B, Vaneerdeweg R, Du Prez F, Waroquier M, Van Speybroeck V. Solvent effects on free radical polymerization reactions: the influence of water on the propagation rate of acrylamide and methacrylamide. Macromolecules. 2009;43:827–36.
Demetriades M, Leung IKH, Chowdhury R, Chan MC, McDonough MA, Yeoh KK, Tian Y-M, Claridge TDW, Ratcliffe PJ, Woon ECY, Schofield CJ. Dynamic combinatorial chemistry employing boronic acids/boronate esters leads to potent oxygenase inhibitors. Angew Chem Int Ed. 2012;51:6672–5.
Mondal M, Hirsch AK. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chem Soc Rev. 2015;44:2455–88.
Komáromy D, Nowak P, Otto S. Dynamic combinatorial libraries. Dynamic covalent chemistry: principles, reactions, and applications 2018; 31–119.
Li J, Nowak P, Otto S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J Am Chem Soc. 2013;135:9222–39.
Li J, Nowak P, Fanlo-Virgós H, Otto S. Catenanes from catenanes: quantitative assessment of cooperativity in dynamic combinatorial catenation. Chem Sci. 2014;5:4968–74.
Otto S, Furlan RL, Sanders JK. Selection and amplification of hosts from dynamic combinatorial libraries of macrocyclic disulfides. Science. 2002;297:590–3.
James LI, Beaver JE, Rice NW, Waters ML. A synthetic receptor for asymmetric dimethyl arginine. J Am Chem Soc. 2013;135:6450–5.
Huang R, Leung IKH. Protein-directed dynamic combinatorial chemistry: a guide to protein ligand and inhibitor discovery. Molecules. 2016;21:910.
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev. 2014;43:1899–933.
Ma Y, Pan G, Zhang Y, Guo X, Zhang H. Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum. Angew Chem Int Ed. 2013;52:1511–4.
Yang H, Yuan B, Zhang X, Scherman OA. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res. 2014;47:2106–15.
Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S, Strano MS. Recent advances in molecular recognition based on nanoengineered platforms. Acc Chem Res. 2014;47:979–88.
Roy N, Bruchmann B, Lehn J-M. DYNAMERS: dynamic polymers as self-healing materials. Chem Soc Rev. 2015;44:3786–807.
Pan G, Guo B, Ma Y, Cui W, He F, Li B, Yang H, Shea KJ. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J Am Chem Soc. 2014;136:6203–6.
Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, Pan J, Mei L, Pan G. A drug-self-gated mesoporous antitumor nanoplatform based on ph-sensitive dynamic covalent bond. Adv Funct Mater. 2017;27:1605985.
Liu S, Pan J, Liu J, Ma Y, Qiu F, Mei L, Zeng X, Pan G. Dynamically PEGylated and borate-coordination-polymer-coated polydopamine nanoparticles for synergetic tumor-targeted. Chemo photothermal combination therapy. Small. 2018;14:1703968.
Chen H, Cheng R, Zhao X, Zhang Y, Tam A, Yan Y, Shen H, Zhang YS, Qi J, Feng Y, Liu L, Pan G, Cui W, Deng L. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. Npg Asia Mater. 2019;11:3.
Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.
Cormode DP, Gao L, Koo H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 2017;36:15–29.
Chang B, Zhang M, Qing G, Sun T. Dynamic biointerfaces: from recognition to function. Small. 2015;11:1097–112.
Bie Z, Chen Y, Ye J, Wang S, Liu Z. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem Int Ed. 2015;54:10211–5.
Olivier GK, Cho A, Sanii B, Connolly MD, Tran H, Zuckermann RN. Antibody-mimetic peptoid nanosheets for molecular recognition. ACS Nano. 2013;7:9276–86.
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-templated fragment ligations-from molecular recognition to drug discovery. Angew Chem Int Ed. 2017;56(26):7358–78.
Zhang M, Yan X, Huang F, Niu Z, Gibson HW. Stimuli-responsive host–guest systems based on the recognition of cryptands by organic guests. Acc Chem Res. 2014;47:1995–2005.
He Y, Liao S, Jia H, Cao Y, Wang Z, Wang Y. A self-healing electronic sensor based on thermal-sensitive fluids. Adv Mater. 2015;27:4622–7.
Montarnal D, Tournilhac F, Hidalgo M, Couturier J-L, Leibler L. Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J Am Chem Soc. 2009;131:7966–7.
Guo K, Zhang DL, Zhang XM, Zhang J, Ding LS, Li BJ, Zhang S. Conductive elastomers with autonomic self-healing properties. Angew Chem. 2015;127:12295–301.
Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Macroscopic self-assembly through molecular recognition. Nat Chem. 2011;3:34–7.
Miyamae K, Nakahata M, Takashima Y, Harada A. Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew Chem Int Ed. 2015;54:8984–7.
Chi X, Yu G, Shao L, Chen J, Huang F. A dual-thermoresponsive gemini-type supra-amphiphilic macromolecular [3] pseudorotaxane based on pillar [10] arene/paraquat cooperative complexation. J Am Chem Soc. 2016;138:3168–74.
Yan Q, Zhao Y. ATP-triggered biomimetic deformations of bioinspired receptor-containing polymer assemblies. Chem Sci. 2015;6:4343–9.
Zhang W, Zhang YM, Li SH, Cui YL, Yu J, Liu Y. Tunable nanosupramolecular aggregates mediated by host-guest complexation. Angew Chem. 2016;128:11624–8.
Leigh DA. Genesis of the nanomachines: the 2016 Nobel prize in chemistry. Angew Chem Int Ed. 2016;55:14506–8.
Erbas-Cakmak S, Fielden SD, Karaca U, Leigh DA, McTernan CT, Tetlow DJ, Wilson MR. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science. 2017;358:340–3.
Li J, Cvrtila I, Colomb-Delsuc M, Otten E, Otto S. An, “ingredients” approach to functional self-synthesizing materials: a metal-ion-selective, multi-responsive, self-assembled hydrogel. Chem Eur J. 2014;20:15709–14.
Pappas CG, Shafi R, Sasselli IR, Siccardi H, Wang T, Narang V, Abzalimov R, Wijerathne N, Ulijn RV. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat Nanotechnol. 2016;11:960–7.
Liu Y, Stuart MC, Buhler E, Lehn JM, Hirsch AK. Proteoid dynamers with tunable properties. Adv Funct Mater. 2016;26:6297–305.
Pan G, Zhang Y, Guo X, Li C, Zhang H. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens Bioelectron. 2010;26:976–82.
Wei Y, Zeng Q, Hu Q, Wang M, Tao J, Wang L. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens Bioelectron. 2018;99:136–41.
Theato P, Sumerlin BS, O’Reilly RK, Epps TH III. Stimuli responsive materials. Chem Soc Rev. 2013;42:7055–6.
Chen W, Ma Y, Pan J, Meng Z, Pan G, Sellergren B. Molecularly imprinted polymers with stimuli-responsive affinity: progress and perspectives. Polymers. 2015;7:1689–715.
Xu S, Lu H, Zheng X, Chen L. Stimuli-responsive molecularly imprinted polymers: versatile functional materials. J Mater Chem C. 2013;1:4406–22.
Schild HG. Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.
Pan G, Guo Q, Cao C, Yang H, Li B. Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter. 2013;9:3840–50.
Li S, Yang K, Deng N, Min Y, Liu L, Zhang L, Zhang Y. Thermoresponsive epitope surface-imprinted nanoparticles for specific capture and release of target protein from human plasma. ACS Appl Mater Inter. 2016;8:5747–51.
Li C, Ma Y, Niu H, Zhang H. Hydrophilic hollow molecularly imprinted polymer microparticles with photo-and thermoresponsive template binding and release properties in aqueous media. ACS Appl Mater Inter. 2015;7:27340–50.
Pan G, Guo Q, Ma Y, Yang H, Li B. Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets. Angew Chem Int Ed. 2013;52:6907–11.
Culver HR, Clegg JR, Peppas NA. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res. 2017;50:170–8.
Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci USA. 2006;103:1190–3.
Bai W, Gariano NA, Spivak DA. Macromolecular amplification of binding response in superaptamer hydrogels. J Am Chem Soc. 2013;135:6977–84.
Yoshimatsu K, Lesel BK, Yonamine Y, Beierle JM, Hoshino Y, Shea KJ. Temperature-responsive, “catch and release” of proteins by using multifunctional polymer-based nanoparticles. Angew Chem Int Ed. 2012;51:2405–8.
Marcos V, Stephens AJ, Jaramillo-Garcia J, Nussbaumer AL, Woltering SL, Valero A, Lemonnier J-F, Vitorica-Yrezabal IJ, Leigh DA. Allosteric initiation and regulation of catalysis with a molecular knot. Science. 2016;352:1555–9.
Gil-Ramírez G, Hoekman S, Kitching MO, Leigh DA, Vitorica-Yrezabal IJ, Zhang G. Tying a molecular overhand knot of single handedness and asymmetric catalysis with the corresponding pseudo-D 3-symmetric trefoil knot. J Am Chem Soc. 2016;138:13159–62.
Fanlo-Virgós H, Alba ANR, Hamieh S, Colomb-Delsuc M, Otto S. Transient substrate-induced catalyst formation in a dynamic molecular network. Angew Chem Int Ed. 2014;53:11346–50.
Zhang Q, Tiefenbacher K. Terpene cyclization catalysed inside a self-assembled cavity. Nat Chem. 2015;7:197–202.
Zhang Q, Catti L, Pleiss J, Tiefenbacher K. Terpene Cyclizations inside a Supramolecular Catalyst: Leaving Group-Controlled Product Selectivity and Mechanistic Studies. Soc: J. Am. Chem; 2017.
Alexander C, Davidson L, Hayes W. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron. 2003;59:2025–57.
Guo Y, Guo T. A dual-template imprinted capsule with remarkably enhanced catalytic activity for pesticide degradation and elimination simultaneously. Chem Commun. 2013;49:1073–5.
Chen Z, Sellergren B, Shen X. Synergistic catalysis by “polymeric microzymes and inorganic nanozymes”: the 1 + 1 > 2 effect for intramolecular cyclization of peptides. Front Chem. 2017;5:60.
Gu Y, Yan X, Li C, Zheng B, Li Y, Liu W, Zhang Z, Yang M. Biomimetic sensor based on molecularly imprinted polymer with nitroreductase-like activity for metronidazole detection. Biosens Bioelectron. 2016;77:393–9.
Liu JQ, Wulff G. Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities. Angew Chem Int Ed. 2004;43:1287–90.
Zhang H, Piacham T, Drew M, Patek M, Mosbach K, Ye L. Molecularly imprinted nanoreactors for regioselective huisgen 1, 3-dipolar cycloaddition reaction. J Am Chem Soc. 2006;128:4178–9.
Shen X, Huang C, Shinde S, Jagadeesan KK, Ekström S, Fritz E, Sellergren BR. Catalytic formation of disulfide bonds in peptides by molecularly imprinted microgels at oil/water interfaces. ACS Appl Mater Inter. 2016;8:30484–91.
Shaabani A, Afshari R, Hooshmand SE, Keramati Nejad M. Molecularly imprinted polymer as an eco-compatible nanoreactor in multicomponent reactions: a remarkable synergy for expedient access to highly substituted imidazoles. ACS Sustain Chem Eng. 2017;5:9506–16.
Li S, Ge Y, Tiwari A, Wang S, Turner AP, Piletsky SA. ‘On/off’-switchable catalysis by a smart enzyme-like imprinted polymer. J Catal. 2011;278:173–80.
Zhang Z, Liu B, Liu J, Molecular imprinting for substrate selectivity and enhanced activity of enzyme mimics. Small 2017; 13, n/a–n/a.
Zhang Z, Zhang X, Liu B, Liu J. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc. 2017;139:5412–9.
Wong Y-M, Hoshino Y, Sudesh K, Miura Y, Numata K. Optimization of poly (N-isopropylacrylamide) as an artificial amidase. Biomacromol. 2014;16:411–21.
Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol. 2009;5:789–96.
Mahon CS, Fulton DA. Templation-induced re-equilibration in polymer-scaffolded dynamic combinatorial libraries leads to enhancements in binding affinities. Chem Sci. 2013;4:3661–6.
Mondal M, Radeva N, Fanlo-Virgós H, Otto S, Klebe G, Hirsch AKH. Fragment linking and optimization of inhibitors of the aspartic protease endothiapepsin: fragment-based drug design facilitated by dynamic combinatorial chemistry. Angew Chem Int Ed. 2016;55:9422–6.
Hoshino Y, Koide H, Urakami T, Kanazawa H, Kodama T, Oku N, Shea KJ. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2010;132:6644–5.
O’Brien J, Lee S-H, Onogi S, Shea KJ. Engineering the protein corona of a synthetic polymer nanoparticle for broad-spectrum sequestration and neutralization of venomous biomacromolecules. J Am Chem Soc. 2016;138:16604–7.
Li W, Dong K, Ren J, Qu X. A β-lactamase-imprinted responsive hydrogel for the treatment of antibiotic-resistant bacteria. Angew Chem. 2016;128:8181–5.
Saridakis E, Khurshid S, Govada L, Phan Q, Hawkins D, Crichlow GV, Lolis E, Reddy SM, Chayen NE. Protein crystallization facilitated by molecularly imprinted polymers. Proc Natl Acad Sci USA. 2011;108:11081–6.
Cutivet A, Schembri C, Kovensky J, Haupt K. Molecularly imprinted microgels as enzyme inhibitors. J Am Chem Soc. 2009;131:14699–702.
Beierle JM, Yoshimatsu K, Chou B, Mathews MAA, Lesel BK, Shea KJ. Polymer nanoparticle hydrogels with autonomous affinity switching for the protection of proteins from thermal stress. Angew Chem Int Ed. 2014;53:9275–9.
Nakamoto M, Nonaka T, Shea KJ, Miura Y, Hoshino Y. Design of synthetic polymer nanoparticles that facilitate resolubilization and refolding of aggregated positively charged lysozyme. J Am Chem Soc. 2016;138:4282–5.
Zhang X, Parekh G, Guo B, Huang X, Dong Y, Han W, Chen X, Xiao G. Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discovery, 0, null.
Zhou M, Zhang X, Xie J, Qi R, Lu H, Leporatti S, Chen J, Hu Y. pH-sensitive poly(β-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials. 2018;8:952.
Vergaro V, Scarlino F, Bellomo C, Rinaldi R, Vergara D, Maffia M, Baldassarre F, Giannelli G, Zhang X, Lvov YM, Leporatti S. Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Deliver Rev. 2011;63:847–64.
Parekh G, Shi Y, Zheng J, Zhang X, Leporatti S. Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery. 2018;9:451–68.
Yin D, Wang S, He Y, Liu J, Zhou M, Ouyang J, Liu B, Chen H-Y, Liu Z. Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags. Chem Commun. 2015;51:17696–9.
Shinde S, El-Schich Z, Malakpour A, Wan W, Dizeyi N, Mohammadi R, Rurack K, Wingren AG, Sellergren B. Sialic acid-imprinted fluorescent Core-Shell particles for selective labeling of cell surface glycans. J Am Chem Soc. 2015;137:13908–12.
Liu R, Cui Q, Wang C, Wang X, Yang Y, Li L. Preparation of sialic acid-imprinted fluorescent conjugated nanoparticles and their application for targeted cancer cell imaging. ACS Appl Mater Inter. 2017;9:3006–15.
Kunath S, Panagiotopoulou M, Maximilien J, Marchyk N, Sänger J, Haupt K. Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv Healthc Mater. 2015;4:1322–6.
Panagiotopoulou M, Salinas Y, Beyazit S, Kunath S, Duma L, Prost E, Mayes AG, Resmini M, Tse Sum Bui B, Haupt K. Molecularly imprinted polymer coated quantum dots for multiplexed cell targeting and imaging. Angew Chem. 2016;128:8384–8.
Guo B, Pan G, Guo Q, Zhu C, Cui W, Li B, Yang H. Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chem Commun. 2015;51:644–7.
Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Neurol: Nat. Rev; 2016.
Ferrara N, Ten Adamis A P. Years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15:385–403.
Cecchini A, Raffa V, Canfarotta F, Signore G, Piletsky S, MacDonald MP, Cuschieri A. In vivo recognition of human vascular endothelial growth factor by molecularly imprinted polymers. Nano Lett. 2017;17:2307–12.
Koide H, Yoshimatsu K, Hoshino Y, Lee S-H, Okajima A, Ariizumi S, Narita Y, Yonamine Y, Weisman AC, Nishimura Y. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nat Chem. 2017;9:715.
Zhang Y, Deng C, Liu S, Wu J, Chen Z, Li C, Lu W. Active targeting of tumors through conformational epitope imprinting. Angew Chem Int Ed. 2015;54:5157–60.
Peng S, Wang Y, Li N, Li C. Enhanced cellular uptake and tumor penetration of nanoparticles by imprinting the “hidden” part of membrane receptors for targeted drug delivery. Chem Commun. 2017;53:11114–7.
Yin D, Li X, Ma Y, Liu Z. Targeted Cancer Imaging and Photothermal Therapy via Monosaccharide-Imprinted Gold Nanorods. Commun: Chem; 2017.
Mager MD, LaPointe V, Stevens MM. Exploring and exploiting chemistry at the cell surface. Nat Chem. 2011;3:582.
Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G. A versatile dynamic mussel-inspired biointerface: from specific cell behavior modulation to selective cell isolation. Angew Chem Int Ed. 2018;57:7878–82.
Robertus J, Browne WR, Feringa BL. Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem Soc Rev. 2010;39:354–78.
Ma Y, Tian X, Liu L, Pan J, Pan G. Dynamic synthetic biointerfaces: from reversible chemical interactions to tunable biological effects. Acc. Chem. Res. 2019.
Pan G, Sun S, Zhang W, Zhao R, Cui W, He F, Huang L, Lee S-H, Shea KJ, Shi Q. Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials. J Am Chem Soc. 2016;138:15078–86.
Nishino H, Huang CS, Shea KJ. Selective protein capture by epitope imprinting. Angew Chem Int Ed. 2006;45:2392–6.