Các dấu ấn sinh học RNA không mã hóa liên quan đến chu kỳ tế bào mới nổi từ nước bọt và máu đối với ung thư biểu mô tế bào vảy khoang miệng

Springer Science and Business Media LLC - Tập 50 - Trang 9479-9496 - 2023
Asrarunissa Kalmatte1,2, Punchappady Devasya Rekha2, Chandrahas Koumar Ratnacaram2
1Srinivas College Of Physiotherapy, Mangaluru, India
2Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangaluru, India

Tóm tắt

Các giai đoạn đầu của sự tiến triển ung thư biểu mô tế bào vảy khoang miệng (OSCC) chưa được thông báo hoặc chưa phân biệt là những lý do chính dẫn đến việc phát hiện ở giai đoạn muộn và kết quả sống sót kém của ung thư khoang miệng. Bài tổng quan này tóm tắt các nghiên cứu trước đây và những tiến bộ gần đây về ảnh hưởng của RNA không mã hóa (ncRNA) bị rối loạn đến chu kỳ tế bào và khả năng sử dụng của chúng như các dấu ấn chẩn đoán và tiên đoán của ung thư khoang miệng. Việc tìm kiếm tài liệu đã được thực hiện bằng cách sử dụng các từ khóa sau: 'RNA không mã hóa trong huyết thanh/nước bọt' và 'RNA không mã hóa trong huyết thanh/nước bọt và chu kỳ tế bào', 'RNA nc bị rối loạn trong huyết thanh/nước bọt và chu kỳ tế bào', 'Cdk/CKI và ncRNAs', 'RNA nc mô liên quan đến 'ung thư khoang miệng'. Dữ liệu đã biên soạn tập trung chủ yếu vào ý nghĩa chẩn đoán và tiên đoán của MicroRNA (miRNA), RNA vòng (circRNA), và RNA không mã hóa dài (lncRNA) đối với ung thư khoang miệng và tất cả các loại ung thư khác, cũng như các bài viết liên quan chủ đề được xuất bản bằng các ngôn ngữ khác ngoài tiếng Anh nằm ngoài phạm vi của bài tổng quan này và sẽ bị loại ra khỏi nghiên cứu. Hơn nữa, các bài viết tập trung vào các dấu ấn DNA, protein và chuyển hóa cũng bị loại trừ khỏi nghiên cứu. Trong khi tồn tại nhiều phân tử sinh học tiềm năng như DNA, RNA, protein, chuyển hóa và kháng nguyên đặc hiệu đại diện cho các dấu ấn tiên đoán trong dịch cơ thể cho ung thư khoang miệng, bài tổng quan này hoàn toàn tập trung vào RNA không mã hóa giới hạn trong nước bọt và máu, chọn lọc ra một số RNA đáng tin cậy trong số những điều tra gần đây dựa trên các kỹ thuật tinh vi, nhóm mẫu và độ nhạy cũng như độ đặc hiệu, ví dụ như miR-1307-5p trong nước bọt, miR-3928, hsa_circ_0001874 và ENST00000412740, NR_131012, ENST00000588803, NR_038323, miR-21 trong tuần hoàn. Do đó, cần thực hiện thêm các nghiên cứu để xác nhận lâm sàng việc sử dụng các dấu ấn sinh học không xâm lấn này trong ung thư khoang miệng.

Từ khóa

#RNA không mã hóa #dấu ấn sinh học #ung thư khoang miệng #chu kỳ tế bào #miRNA

Tài liệu tham khảo

Hyuna S et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249 Swati S et al (2018) Oral cancer statistics in India on the basis of first report of 29 population-based cancer registries. J Oral Maxillofac Pathol 22:18 Purandar S et al (2021) Dysbiosis of Oral Microbiota During Oral Squamous Cell Carcinoma Development. Front Oncol 11:1–15 Ganesan A et al (2017) Expression profiling of long non-coding RNA identifies linc-RoR as a prognostic biomarker in oral cancer. Tumor Biol. https://doi.org/10.1177/1010428317698366 Vasileios R et al (2018) P53 mutations in oral cavity carcinoma. J BUON 23:1569–1572 Ying C et al (2021) Longitudinal detection of somatic mutations in saliva and plasma for the surveillance of oral squamous cell carcinomas. PLoS ONE 16:1–15 Marina B, Le CB, Gerardo F, Volker B, Frédéric L (2021) Cell biology new insights into CDK regulators novel opportunities for cancer therapy. Trends Cell Biol 31:331–344 Borui Z et al (2019) Enhancement of histone deacetylase inhibitor sensitivity in combination with cyclin-dependent kinase inhibition for the treatment of oral squamous cell carcinoma. Cell Physiol Biochem 53:141–156 Maria G et al (2021) Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 132:566–579 Monteiro Luís Silva et al. 2012 Combined cytoplasmic and membranous EGFR and p53 overexpression is a poor prognostic marker in early stage oral squamous cell carcinoma. J Oral Pathol Med 41: 559–567 Guangzhao G, Bakr Mahmoud M, Norman F, Love RM (2018) Expression of cyclin D1 correlates with p27KIP1 and regulates the degree of oral dysplasia and squamous cell carcinoma differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol 126:174–183 Yixuan Li et al (2022) Cyclin-dependent kinase 5 promotes the growth of tongue squamous cell carcinoma through the microRNA 513c–5p/cell division cycle 25B pathway and is associated with a poor prognosis. Cancer 128:1775–1786 Xin C et al (2015) The clinical signifcance of cdk1 expression in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 20:e7–e12 Palareti G et al (2016) Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int J Lab Hematol 38:42–49 Sana F et al (2022) Immunohistochemical analysis of expression of cyclin D1 in different grades of oral squamous cell carcinoma. J Pharm Res Int. https://doi.org/10.9734/jpri/2022/v34i30B36072 Qiu-shi P et al (2020) CircRNA _ 0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis. https://doi.org/10.1038/s41419-020-2273-y Irimie Alexandra Iulia et al. (2017) A Looking-Glass of Non-Coding RNAs in Oral Cancer. Int J Mol Sci Doi: https://doi.org/10.3390/ijms18122620 Viviana V, Monica R (2018) miR-100 and miR-125b regulate epithelial-mesenchymal transition and drug resistance in tumors. Non-coding RNA Investig 2:57–57 Libório-Kimura Tatiana N, Min JH, Chan Edward KL (2015) miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer. Oral Oncol 51:151–157 Shao Yuan Qu, Yiping DS, Bowen Y, Meiju Ji (2013) MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 13:1 Ling-fei J, Su-bi W, Kai G, Gan Ye-hua Y, Guang-yan (2013) Prognostic Implications of MicoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS ONE 8:1–11 Manasa VG, Kannan S (2017) Impact of microRNA dynamics on cancer hallmarks: An oral cancer scenario. Tumor Biol. https://doi.org/10.1177/1010428317695920 Zicheng W, Beili L, Deqiang H, Xiaoming L (2021) Mir-5100 Mediates Proliferation, migration and invasion of oral squamous cell carcinoma cells via targeting SCAI. J Investig Surg 34:834–841 Xiaotang W et al (2020) MicroRNA-504 functions as a tumor suppressor in oral squamous cell carcinoma through inhibiting cell proliferation, migration and invasion by targeting CDK6. Int J Biochem Cell Biol 119:105663 Zekun W et al (2023) MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 23:668 Huang Fei et al. Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma. Anquan S et al (2018) miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artif Cells, Nanomed Biotechnol 46:1754–1762 He Z, da Jiang Lin hong, Sun Da wei, Hou Jun chen, Ji Zhen ling (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer. https://doi.org/10.1007/s12282-017-0793-9 Zhang Xiao Yun et al. 2022 Circyap inhibits oral squamous cell carcinoma by arresting cell cycle. Acta Odontol Scand 80(2): 117–124 Yilong Ai et al (2020) circ_SEPT9, a newly identified circular RNA, promotes oral squamous cell carcinoma progression through miR-1225/PKN2 axis. J Cell Mol Med 24:13266–13277 Guanhui C et al (2020) Upregulation of Circular RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Mol Ther Nucleic Acids 19:961–973 Kuangzheng L et al (2021) Circ _ 0000745 strengthens the expression of CCND1 by functioning as miR - 488 sponge and interacting with HuR binding protein to facilitate the development of oral squamous cell carcinoma. Cancer Cell Int. https://doi.org/10.1186/s12935-021-01884-1 Yu Huiming Y, Zhifen WX, Dazhao W (2021) Circular RNA circCLK3 promotes the progression of tongue squamous cell carcinoma via miR-455–5p / PARVA axis. Biotech and App Biochem. https://doi.org/10.1002/bab.2120 Wei D et al (2019) Microarray profile of circular RNAs identifies hsa_circRNA_102459 and hsa_circRNA_043621 as important regulators in oral squamous cell carcinoma. Oncol Rep 42:2738–2749 Soudeh G, Hamed S, Tondro AF (2020) The role of non-coding RNAs in controlling cell cycle related proteins in cancer cells. Front Oncol. https://doi.org/10.3389/fonc.2020.608975 Hongcheng J, Xuan W, Zheng S (2021) Screening and validation of plasma long non-coding RNAs as biomarkers for the early diagnosis and staging of oral squamous cell carcinoma. Oncol Lett 21:1–8 Luka B, Metka RG, Damjan G (2017) Long Noncoding RNAs as Biomarkers in Cancer. Dis Markers. https://doi.org/10.1155/2017/7243968 Na Li, Hongbo D, Qing X, Xuezhen W (2021) Long-chain non-coding RNA HOTTIP enhances oral cancer cell proliferation and migration capacity by down-regulating miR-206. J BUON 26:762–768 Koyo N et al (2018) Screening for long noncoding RNAs associated with oral squamous cell carcinoma reveals the potentially oncogenic actions of DLEU1. Cell Death Dis. https://doi.org/10.1038/s41419-018-0893-2 Yue Z, Rui Y (2021) Long non-coding RNA HOXA-AS3 promotes cell proliferation of oral squamous cell carcinoma through sponging microRNA miR-218-5p. Bioengineered 12:8724–8737 Mingwei C, Yanliang Z, Jingfang X, Enming Z, Xiaoqing Z (2020) Integrative profiling analysis identifies the oncogenic long noncoding RNA DUXAP8 in oral cancer. Anticancer Drugs 8:792–798 Yang Cheng Mei et al. Aberrant DNA hypermethylation-silenced SOX21-AS1 gene expression and its clinical importance in oral cancer. Clin Epigenetics 2016; 8: 129. Rui Z, Tao WanjunLei Yu (2023) Overexpression of long non-coding RNA GASL1 induces apoptosis and G0/G1 cell cycle arrest in human oral cancer cells. Acta Biochim Pol 70:271–276 Ce X, Shou-gang S, Zhi-quan Y, Feng B (2021) Biomedicine & pharmacotherapy role of lncRNA LUCAT1 in cancer. Biomed Pharmacother 134:111158 Jingxin C et al (2021) LncRNA GACAT1 targeting miRNA-149 regulates the molecular mechanism of proliferation, apoptosis and autophagy of oral squamous cell carcinoma cells. Aging (Albany NY) 13:20359–20371 Jun L, Lizhong L, Kexiong O, Zhiqiang Li, Xianping Yi (2017) MALAT1 induces tongue cancer cells’ EMT and inhibits apoptosis through Wnt/β-catenin signaling pathway. J Oral Pathol Med 46:98–105 Chunyu W, Qiang W, Guangqi Y (2021) Long noncoding RNA ZEB1-AS1 downregulates miR-23a, promotes tumor progression, and predicts the survival of oral squamous cell carcinoma patients. OncoTargets and Therapy 14:2699–2710 Chenxi Li et al (2020) Biomedicine & pharmacotherapy Long non-coding RNA RBM5-AS1 promotes the aggressive behaviors of oral squamous cell carcinoma by regulation of miR-1285-3p / YAP1 axis. Biomed Pharmacother 123:109723 Wei L, Yilin Y, Linjun S, Tang GuoyaoLan W (2021) A novel lncRNA LOLA1 may predict malignant progression and promote migration, invasion, and EMT of oral leukoplakia via the AKT/GSK-3β pathway. J Cell Biochem 122:1302–1312 Xiaozhen Wu, Zuode G, Long M, Qibao W (2021) lncRNA RPSAP52 induced the development of tongue squamous cell carcinomas via miR-423-5p/MYBL2. J Cell Mol Med 25:4744–4752 Xiaoyong Q, Chenxi L, Hao C (2021) Long Noncoding RNA ZFAS1 Promotes Progression of Oral Squamous Cell Carcinoma Through Targeting miR-6499-3p/CCL5 Axis. In Vivo (Brooklyn) 35:3211 Fenqian Y et al (2020) Long non-coding RNA PHACTR2-AS1 promotes tongue squamous cell carcinoma metastasis by regulating Snail. J Biochem 168:651–657 Wang J, Jia J, Zhou L (2020) Long non-coding RNA CASC2 enhances cisplatin sensitivity in oral squamous cell cancer cells by the miR-31-5p/KANK1 axis. Neoplasma 67:1279–1292 Shuwei C, Muwen Y, Chunyang W, Ying O (2021) Forkhead box D1 promotes EMT and chemoresistance by upregulating lncRNA CYTOR in oral squamous cell carcinoma. Cancer Lett 503:43–53 Xue Q et al (2021) Long noncoding RNA CEBPA-DT promotes cisplatin chemo-resistance through CEBPA/BCL2 mediated apoptosis in oral squamous cellular cancer. Int J Med Sci. https://doi.org/10.7150/ijms.64253 Zhaoyu L et al (2018) Chemotherapy-Induced Long Non-coding RNA 1 Promotes Metastasis and Chemo-Resistance of TSCC via the Wnt/b -Catenin Signaling Pathway. Mol Ther 26:1494–1508 Dongya Z et al (2017) Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci Rep 7:1–11 Zheng F et al (2017) LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression Medicine. Cancer Med. https://doi.org/10.1002/cam4.1253 Xuguang Y et al (2022) GAS5 alleviates cisplatin drug resistance in oral squamous cell carcinoma by sponging miR-196a. J Int Med Res. https://doi.org/10.1177/03000605221132456 Shanyi Z et al (2018) LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via MIR-211–5p mediated Ezrin/Fak/Src signaling. Cell Death Dis. https://doi.org/10.1038/s41419-018-0793-5 Te Hsuan J et al (2022) MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci 29:1–20 Xijun W, Hongmei G, Banjamin Y, Julia H (2017) miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer. Oncology Reports 5:2720–2726 Sayyed Adil Ali et al. 2021 MiR-155 Inhibitor-Laden Exosomes Reverse Resistance to Cisplatin in a 3D Tumor Spheroid and Xenograft Model of Oral Cancer. Mol Pharm 18(8): 3010–3025 Jun C et al (2020) Exosomal miR-200c suppresses chemoresistance of docetaxel in tongue squamous cell carcinoma by suppressing TUBB3 and PPP2R1B. Aging (Albany NY) 12:6756–6773 Guopei Z et al (2015) ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH. Mol Cancer 14:1–12 Shen Li et al (2021) Exosomal-mediated transfer of APCDD1L-AS1 induces 5-fluorouracil resistance in oral squamous cell carcinoma via miR-1224-5p/nuclear receptor binding SET domain protein 2 (NSD2) axis. Bioengineered 12:7188–7204 Liqiang C, Zhu Qingli Lu, Lingwei LY (2020) MiR-132 inhibits migration and invasion and increases chemosensitivity of cisplatin-resistant oral squamous cell carcinoma cells via targeting TGF-β1. Bioengineered 11:91–102 Yan JiaweiHongyan Xu (2021) Regulation of transforming growth factor-beta1 by circANKS1B/miR-515-5p affects the metastatic potential and cisplatin resistance in oral squamous cell carcinoma. Bioengineered 12:12420–12430 Vasileios Zisis et al (2023) Preliminary Study of the Cancer Stem Cells’ Biomarker CD147 in Leukoplakia: Dysplasia and Squamous Cell Carcinoma of Oral Epithelial Origin. Cureus. https://doi.org/10.7759/cureus.38807 Vasileios Z, Konstantinos P, Poulopoulos A, Prashanth P, Andreadis D (2023) Altered Presence of Cancer Stem Cell ALDH1/2 in Oral Leukoplakias and Squamous Cell Carcinomas. Cureus 15:1–8 Rajakishore M (2013) Cell cycle-regulatory cyclins and their deregulation in oral cancer. Oral Oncol 49:475–481 Hao F, Xiaoqi Z, Wenli L, Jian W (2020) Long non-coding RNA SLC16A1-AS1: its multiple tumorigenesis features and regulatory role in cell cycle in oral squamous cell carcinoma. Cell Cycle 19:1641–1653 Guang-hui Li, Zhong-hui Ma, Xi W (2019) Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt / β -catenin signaling pathway. Cell Cycle 18:2902–2913 Yojiro K, Takeshi T (2020) Long noncoding RNA ANROC on the INK4 locus functions to suppress cell proliferation. Cancer Genomics Proteomics 17:425–430 Ji LC, Chun LS, Chieh YC, Wen CH, Wei CK (2012) Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 34:219–224 Zahran F, Ghalwash D, Shaker O, Al-Johani K, Scully C (2015) Salivary microRNAs in oral cancer. Oral Dis 21:739–747 Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS (2014) Genomewide Study of Salivary MicroRNAs for detection of oral cancer. J Dent Res 93:86S-93S Kai-feng H et al (2016) MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol 53:42–47 Duz Mehmet Bugrahan et al. (2016) Identification of miR-139–5p as a saliva biomarker for tongue squamous cell carcinoma a pilot study. Cell Oncol 39(2): 187–193 Ries Jutta et al. 2014 MiR-186 miR-3651 and miR-494 Potential biomarkers for oral squamous cell carcinoma extracted from whole blood. 31(3): 1429–1436. Qiuqin W (2016) Association of decreased expression of serum miR-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit 22:289–294 Hirohiko T, Ri S, Yuji T, Xuhong Z, Yukie Y (2016) Circulating miR-223 in oral cancer its potential as a novel diagnostic biomarker and therapeutic target. PLoS ONE. https://doi.org/10.1371/journal.pone.0159693 Lu Ya Ching et al. 2015 Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer. Clin Biochem 48(3): 115–121 Chung-ji Liu et al (2016) Plasma miR-187 is a potential biomarker for oral carcinoma. Clin Oral Investig. https://doi.org/10.1007/s00784-016-1887-z Patricia S et al (2015) Small RNAs in metastatic and non-metastatic oral squamous cell carcinoma. BMC Med Genomics. https://doi.org/10.1186/s12903-015-0084-9 Huanxi X, Yuqi Y, Hongmei Z, Xuguang Y, Luo Y (2015) Serum miR-483–5p : a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumor Biol. https://doi.org/10.1007/s13277-015-3514-z Hidenori T et al (2015) Genome-wide analysis of long noncoding RNA turnover. Methods Mol Biol 1262:305–320 Merdan F et al (2016) Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy? Tumor Biol 37:3969–3978 Chae Young Kwang et al. 2016 Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget 7(40): 65364-65373. Patel Aditi et al. Salivary exosomal miR-1307–5p predicts disease aggressiveness and poor prognosis in oral squamous cell carcinoma patients. bioRxiv 2022; 2022.07.13.499918. Aditi P et al (2023) A novel 3-miRNA network regulates tumour progression in oral squamous cell carcinoma. Biomark Res 11:1–14 Nikolay M et al (2021) Salivary miR-30c-5p as potential biomarker for detection of oral squamous cell carcinoma. Biomedicines 9:1–14 Chiara R et al (2021) Genome-wide study of salivary miRNAs identifies miR-423-5p as promising diagnostic and prognostic biomarker in oral squamous cell carcinoma. Theranostics 11:2987–2999 Cheng Ann-joy et al. Systemic Investigation Identifying Salivary miR-196b as a Promising Biomarker for Early Detection of Head-Neck Cancer and Oral Precancer Lesions. 2021; 1–13. Koopaie Maryam, Manifar Soheila, Lahiji Shahab Shokouhi. 2021 Assessment of MicroRNA-15a and MicroRNA-16–1 Salivary Level in Oral Squamous Cell Carcinoma Patients. MicroRNA 10: 74–79. Lihong He et al (2020) Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother 121:109553 Tar Ildik, Kiss Csongor. Biomarkers in Patients with Oral Squamous Cell Carcinoma. 2022; 1–13. Hasan ASM, Mohamed GS, Gamil SO, El AS, Omar ZS (2018) Evaluating the accuracy of microRNA27b and microRNA137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients. Arch Dermatol Res 310:209–220 Fadhil Rushdi S, Wei Ming Q, Dimitrios N, David G, Nair RG (2020) Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS One 15:1–12 Masoumeh M et al (2023) Salivary level of microRNA-146a and microRNA-155 biomarkers in patients with oral lichen planus versus oral squamous cell carcinoma. BMC Oral Health 23:1–9 Zhao Si Y, Jun W, Bo OS, Kun HZ, Lan L (2018) Salivary Circular RNAs Hsa-Circ-0001874 and Hsa-Circ-0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma. Cell Physiol Biochem 47:2511–2521 Jianbo S et al (2019) Serum miR-626 and miR-5100 are promising prognosis predictors for oral squamous cell carcinoma. Theranostics 9:920–931 Yi-an C, Shun-long W, Shun-fa Y, Chih-hung C (2018) A Three – MicroRNA signature as a potential biomarker for the early detection of oral cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19030758 Yan Y et al (2017) Circulating miRNAs as biomarkers for oral squamous cell carcinoma recurrence in operated patients. Oncotarget 8:8206–8214 Chen Ching Mei et al. 2021 Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis. Oral Oncol 120: 105402 Singh Pooja et al. 2018 Circulating MicroRNA-21 Expression as a Novel Serum Biomarker for Oral Sub-Mucous Fibrosis and Oral Squamous Cell Carcinoma. 19: 1053–1058. Chen Liang et al. Diagnostic and prognostic value of serum miR-99a expression in oral squamous cell carcinoma un co rre ct pr oo f v er si on co rre ct ed pr oo. 2018; 1: 1–7. Karimi Abbas, Bahrami Naghmeh, Sayedyahossein Amirsalar, Derakhshan Samira. Evaluation of circulating serum 3 types of microRNA as biomarkers of oral squamous cell carcinoma ; A pilot study. 2019; 1–6. Farzaneh B et al (2021) Early diagnosis of oral squamous cell carcinoma (OSCC) by miR-138 and miR-424–5p expression as a cancer marker. Asian Pac J Cancer Prev 22:2185–2189 Wang Long-long et al. 2018 MiR-31 is a potential biomarker for diagnosis of head and neck squamous cell carcinoma. 11: 4339–4345 Jutta R et al (2017) Prognostic significance of altered miRNA expression in whole blood of OSCC patients. Oncol Rep 37:3467–3474 Sun Guan et al. 2018 Mir-200b-3p in plasma is a potential diagnostic biomarker in oral squamous cell carcinoma. Biomarkers 0: 137–141 Tao He et al (2021) Plasma-derived exosomal microRNA-130a serves as a noninvasive biomarker for diagnosis and prognosis of oral squamous cell carcinoma. J Oncol. https://doi.org/10.1155/2021/5547911 Elisabetta B et al (2022) Extracellular vesicles miR- 210 as a potential biomarker for diagnosis and survival prediction of oral squamous cell carcinoma patients. J Oral Pathol Med 51(4):350–357 Lili W, Hongguang S, Shiming Y (2021) MicroRNA-206 has a bright application prospect in the diagnosis of cases with oral cancer. J Cell Mol Med 25:8169–8173 Sajjad B et al (2021) Role of miR153 and miR455-5p Expression in Oral Squamous Cell Carcinoma Isolated from Plasma. Asian Pacific J Cancer Prev 22:157–161 Zhiyuan Lu et al (2019) miR-31-5p Is a Potential Circulating Biomarker and Therapeutic Target for Oral Cancer. Mol Ther - Nucleic Acids 16:471–480 Hung Kai Feng et al. 2022 Identification of plasma hsa_circ_0000190 and 0001649 as biomarkers for predicting the recurrence and treatment response of patients with oral squamous cell carcinoma. J Chin Med Assoc 85: 431–437 Yanwei Luo, Fengxia Liu, Jie Guo, Rong Gui (2020) Upregulation of circ _ 0000199 in circulating exosomes is associated with survival outcome in OSCC. Sci Rep. https://doi.org/10.1038/s41598-020-70747-y Fan Chun Mei et al. 2019 CircMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Science 11(7): 2180–2188. Bing X, Tao H, He Xin H, Xinlan GY (2019) A circular RNA derived from MMP9 facilitates oral squamous cell carcinoma metastasis through regulation of MMP9 mRNA stability. Cell Transplant 28:1614–1623 Yao Y et al (2018) Circulating Long Noncoding RNAs as Biomarkers for Predicting Head and Neck Squamous Cell Carcinoma. Cell Physiol Biochem 50:1429–1440 Xinyu Z et al (2020) Up-regulation of plasma lncRNA CACS15 distinguished early-stage oral squamous cell carcinoma patient. Oral Dis 26:1619–1624 Le Fei Ou, Yangqian LP, Xiaoming Z (2020) LncRNA NCK1-AS1 in plasma distinguishes oral ulcer from early-stage oral squamous cell carcinoma. J Biol Res 27:1–7 Chunmei F et al (2020) Upregulation of long non-coding RNA LOC284454 may serve as a new serum diagnostic biomarker for head and neck cancers. BMC Cancer 20:917 Panpan Z et al (2019) LncRNA PAPAS promotes oral squamous cell carcinoma by upregulating transforming growth factor-β1. J Cell Biochem 120:16120–16127 Huan Shen et al (2020) MIR4435 - 2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF - β1. Odontology. https://doi.org/10.1007/s10266-020-00488-x Shieh Tzong Ming et al. 2021 Lack of salivary long non‐coding rna xist expression is associated with increased risk of oral squamous cell carcinoma a cross‐sectional study. J Clin Med Doi: https://doi.org/10.3390/jcm10194622