Emerging carbon-based nanosensor devices: structures, functions and applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhang CY, Yeh HC, Kuroki MT et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831
Worsfold O, Toma C, Nishiya T (2004) Development of a novel optical bionanosensor. Biosens Bioelectron 19(11):1505–1511
Yola ML, Atar N, Eren T (2014) Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens Actuators B 198:70–76
Qian ZS, Shan XY, Chai LJ et al (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70
Li Y, Ma Q, Liu Z et al (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@ silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74
Chi X, Huang D, Zhao Z et al (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33(1):189–206
Hirata T, Amiya S, Akiya M et al (2007) Development of a vitamin-protein sensor based on carbon nanotube hybrid materials. Appl Phys Lett 90(23):233106
Hirata T, Amiya S, Akiya M et al (2008) Chemical modification of carbon nanotube based bio-nanosensor by plasma activation. Jpn J Appl Phys 47(4R):2068–2071
Adhikari S, Chowdhury R (2012) Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Phys E 44(7):1528–1534
Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67
Suehiro J, Sano N, Zhou G et al (2006) Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor. J Electrost 64(6):408–415
Hangarter CM, Bangar M, Mulchandani A et al (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20(16):3131–3140
Hun X, Zhang Z (2007) Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159(3–4):255–261
R&M (2014) Nanosensor Markets. Nanomarkets (March 2014)
Sakata T, Miyahara Y (2006) DNA sequencing based on intrinsic molecular charges. Angew Chem Int Ed 45(14):2225–2228
Adhikari S, Chowdhury R (2010) The calibration of carbon nanotube based bionanosensors. J Appl Phys 107(12):124322
Yoon SLaDS (2007) Bionanosensors. BioChip J 193(1):60–70
Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(13):198–210
Khlobystov AN, Britz DA, Briggs GAD (2005) Molecules in carbon nanotubes. Acc Chem Res 38(12):901–909
Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5(12):9306–9312
Lien DH, Hsu WK, Zan HW et al (2006) Photocurrent amplification at carbon nanotube-metal contacts. Adv Mater 18(1):98–103
Krusin-Elbaum L, Newns D, Zeng H et al (2004) Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431(7009):672–676
Liu L, Guo G, Jayanthi C et al (2002) Colossal paramagnetic moments in metallic carbon nanotori. Phys Rev Lett 88(21):217206
Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. Antennas Propag IEEE Trans 53(11):3426–3435
Suryavanshi AP, Yu MF, Wen J et al (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84(14):2527–2529
Poncharal P, Wang Z, Ugarte D et al (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516
Purcell S, Vincent P, Journet C et al (2002) Tuning of nanotube mechanical resonances by electric field pulling. Phys Rev Lett 89(27):276103
Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nano 3(9):533–537
Peng H, Chang C, Aloni S et al (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97(8):087203
Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301
Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659–666
Murmu T, Adhikari S, Wang CY (2011) Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Phys E 43(6):1276–1280
Zhang Y, Liu G, Xie X (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71(19):195404
Warner JH, Watt AA, Ge L et al (2008) Dynamics of paramagnetic metallo fullerenes in carbon nanotube peapods. Nano Lett 8(4):1005–1010
Kong J, Franklin NR, Zhou C et al (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625
Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122
Ebbesen T, Lezec H, Hiura H et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56
Baerends EJTZ, Autschbach J, Bashford D et al (2013) Amsterdam density functional. In: SCM, theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com
Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13(14):6670–6688
Autschbach J (2004) The accuracy of hyperfine integrals in relativistic NMR computations based on the zeroth-order regular approximation. Theor Chem Acc 112(1):52–57
Odom TW, Huang JL, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64
Jensen L, Åstrand P-O, Mikkelsen KV (2004) The static polarizability and second hyperpolarizability of fullerenes and carbon nanotubes. J Phys Chem A 108(41):8795–8800
Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518
Bérces ABC, Boerrigter PM, Cavallo L et al (2004) ADF2004.01. In: SCM, theoretical chemistry, Vrije Universitiet, Amsterdam, The Netherlands. http://www.scm.com
Sahoo S, Kontos T, Furer J et al (2005) Electric field control of spin transport. Nat Phys 1(2):99–102
Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249
Nakhmanson S, Calzolari A, Meunier V et al (2003) Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys Rev B 67(23):235406
Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly (vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11(44):10506–10512
Li J, Lu Y, Ye Q et al (2003) Carbon nanotube sensors for gas and organic vapour detection. Nano Lett 3(7):929–933
Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351
McGrath M, Pham AVH (2008) Microwave based ammonia detection with vertically aligned carbon nanotube arrays. Sens Lett 6(5):719–722
Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75(9):2075–2079
Lee J, Jo M, Kim TH et al (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11(1):52–56
Vink T, Gillies M, Kriege J et al (2003) Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett 83(17):3552–3554
Pastine SJ, Okawa D, Kessler B et al (2008) A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J Am Chem Soc 130(13):4238–4239
Park OK, Jeevananda T, Kim NH et al (2009) Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scr Mater 60(7):551–554
Kathi J, Rhee K (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43(1):33–37
Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40(7):3995–4048
Zhao XD, Fan XH, Chen XF et al (2006) Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. J Polym Sci Part A 44(15):4656–4667
Kruss S, Hilmer AJ, Zhang J et al (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950
Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2(6):341–350
Barone PW, Baik S, Heller DA et al (2004) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92
Barone PW, Strano MS (2006) Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew Chem 118(48):8318–8321
Satishkumar B, Brown LO, Gao Y et al (2007) Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat Nanotechnol 2(9):560–564
Heller DA, Jin H, Martinez BM et al (2008) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4(2):114–120
Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3):754–759
Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157
Wang X, Ouyang Y, Li X et al (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100(20):206803
Meric I, Han MY, Young AF et al (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3(11):654–659
Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718
Lee CG, Park S, Ruoff RS et al (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95(2):023304
Wang L, Chen X, Yu A et al (2014) Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. Sci Rep 4:5470
Yavari F, Chen Z, Thomas AV et al (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166
Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823
Kuila T, Bose S, Khanra P et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648
Wu JF, Xu MQ, Zhao GC (2010) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12(1):175–177
Shan C, Yang H, Han D et al (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25(6):1504–1508
Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81(1):334–338
Song Y, He Z, Hou H et al (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65
Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036
He S, Song B, Li D et al (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459
Wang B, Chang YH, Zhi LJ (2011) High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater 26(1):31–35
Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111
Jaaniso R, Kahro T, Kozlova J et al (2014) Temperature induced inversion of oxygen response in CVD graphene on SiO2. Sens Actuators B 190:1006–1013