Emerging carbon-based nanosensor devices: structures, functions and applications

Springer Science and Business Media LLC - Tập 3 Số 1 - Trang 63-72 - 2015
Sergio Manzetti1, D. Vasilache2, Elisabetta De Vito Francesco3
1Fjordforsk A.S., Institute for Science and Technology, 6894, Vangsnes, Norway
2Laboratory of Micromachined Structures, Microwave Circuits and Devices - L4, National Institute for Research and Development in Microtechnologies (IMT Bucharest), 023573, Bucharest, Romania
3Laboratory for Nanofabrication of Nanodevices (Veneto Nanotech), Corso Stati Uniti 4, 35127 Padova, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang CY, Yeh HC, Kuroki MT et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831

Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69(2):288–301

Worsfold O, Toma C, Nishiya T (2004) Development of a novel optical bionanosensor. Biosens Bioelectron 19(11):1505–1511

Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856

Yola ML, Atar N, Eren T (2014) Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sens Actuators B 198:70–76

Qian ZS, Shan XY, Chai LJ et al (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70

Li Y, Ma Q, Liu Z et al (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@ silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74

Chi X, Huang D, Zhao Z et al (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33(1):189–206

Hirata T, Amiya S, Akiya M et al (2007) Development of a vitamin-protein sensor based on carbon nanotube hybrid materials. Appl Phys Lett 90(23):233106

Hirata T, Amiya S, Akiya M et al (2008) Chemical modification of carbon nanotube based bio-nanosensor by plasma activation. Jpn J Appl Phys 47(4R):2068–2071

Adhikari S, Chowdhury R (2012) Zeptogram sensing from gigahertz vibration: graphene based nanosensor. Phys E 44(7):1528–1534

Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67

Suehiro J, Sano N, Zhou G et al (2006) Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor. J Electrost 64(6):408–415

Sano N, Ohtsuki F (2007) Carbon nanohorn sensor to detect ozone in water. J Electrost 65(4):263–268

Hangarter CM, Bangar M, Mulchandani A et al (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20(16):3131–3140

Hun X, Zhang Z (2007) Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum. Microchim Acta 159(3–4):255–261

R&M (2014) Nanosensor Markets. Nanomarkets (March 2014)

Sakata T, Miyahara Y (2006) DNA sequencing based on intrinsic molecular charges. Angew Chem Int Ed 45(14):2225–2228

Adhikari S, Chowdhury R (2010) The calibration of carbon nanotube based bionanosensors. J Appl Phys 107(12):124322

Yoon SLaDS (2007) Bionanosensors. BioChip J 193(1):60–70

Manzetti S (2013) Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf 1(13):198–210

Khlobystov AN, Britz DA, Briggs GAD (2005) Molecules in carbon nanotubes. Acc Chem Res 38(12):901–909

Khlobystov AN (2011) Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano 5(12):9306–9312

Fischer JE (2002) Chemical doping of single-wall carbon nanotubes. Acc Chem Res 35(12):1079–1086

Lien DH, Hsu WK, Zan HW et al (2006) Photocurrent amplification at carbon nanotube-metal contacts. Adv Mater 18(1):98–103

Krusin-Elbaum L, Newns D, Zeng H et al (2004) Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431(7009):672–676

Liu L, Guo G, Jayanthi C et al (2002) Colossal paramagnetic moments in metallic carbon nanotori. Phys Rev Lett 88(21):217206

Hanson GW (2005) Fundamental transmitting properties of carbon nanotube antennas. Antennas Propag IEEE Trans 53(11):3426–3435

Suryavanshi AP, Yu MF, Wen J et al (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84(14):2527–2529

Poncharal P, Wang Z, Ugarte D et al (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516

Purcell S, Vincent P, Journet C et al (2002) Tuning of nanotube mechanical resonances by electric field pulling. Phys Rev Lett 89(27):276103

Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nano 3(9):533–537

Peng H, Chang C, Aloni S et al (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97(8):087203

Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301

Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659–666

Murmu T, Adhikari S, Wang CY (2011) Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Phys E 43(6):1276–1280

Zhang Y, Liu G, Xie X (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71(19):195404

Warner JH, Watt AA, Ge L et al (2008) Dynamics of paramagnetic metallo fullerenes in carbon nanotube peapods. Nano Lett 8(4):1005–1010

Kong J, Franklin NR, Zhou C et al (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34:83–122

Ebbesen T, Lezec H, Hiura H et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

Baerends EJTZ, Autschbach J, Bashford D et al (2013) Amsterdam density functional. In: SCM, theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com

Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13(14):6670–6688

Autschbach J (2004) The accuracy of hyperfine integrals in relativistic NMR computations based on the zeroth-order regular approximation. Theor Chem Acc 112(1):52–57

Odom TW, Huang JL, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

Jensen L, Åstrand P-O, Mikkelsen KV (2004) The static polarizability and second hyperpolarizability of fullerenes and carbon nanotubes. J Phys Chem A 108(41):8795–8800

Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518

Bérces ABC, Boerrigter PM, Cavallo L et al (2004) ADF2004.01. In: SCM, theoretical chemistry, Vrije Universitiet, Amsterdam, The Netherlands. http://www.scm.com

Sahoo S, Kontos T, Furer J et al (2005) Electric field control of spin transport. Nat Phys 1(2):99–102

Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68(6):1227–1249

Nakhmanson S, Calzolari A, Meunier V et al (2003) Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys Rev B 67(23):235406

Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly (vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11(44):10506–10512

Li J, Lu Y, Ye Q et al (2003) Carbon nanotube sensors for gas and organic vapour detection. Nano Lett 3(7):929–933

Qi P, Vermesh O, Grecu M et al (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3(3):347–351

McGrath M, Pham AVH (2008) Microwave based ammonia detection with vertically aligned carbon nanotube arrays. Sens Lett 6(5):719–722

Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75(9):2075–2079

Lee J, Jo M, Kim TH et al (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11(1):52–56

Vink T, Gillies M, Kriege J et al (2003) Enhanced field emission from printed carbon nanotubes by mechanical surface modification. Appl Phys Lett 83(17):3552–3554

Pastine SJ, Okawa D, Kessler B et al (2008) A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J Am Chem Soc 130(13):4238–4239

Park OK, Jeevananda T, Kim NH et al (2009) Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scr Mater 60(7):551–554

Kathi J, Rhee K (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43(1):33–37

Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40(7):3995–4048

Zhao XD, Fan XH, Chen XF et al (2006) Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. J Polym Sci Part A 44(15):4656–4667

Kruss S, Hilmer AJ, Zhang J et al (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65(15):1933–1950

Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2(6):341–350

Barone PW, Baik S, Heller DA et al (2004) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92

Barone PW, Strano MS (2006) Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew Chem 118(48):8318–8321

Satishkumar B, Brown LO, Gao Y et al (2007) Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing. Nat Nanotechnol 2(9):560–564

Heller DA, Jin H, Martinez BM et al (2008) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4(2):114–120

Krauss TD (2009) Biosensors: nanotubes light up cells. Nat Nanotechnol 4(2):85–86

Kang X, Wang J, Wu H et al (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3):754–759

Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157

Wang X, Ouyang Y, Li X et al (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100(20):206803

Meric I, Han MY, Young AF et al (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3(11):654–659

Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718

Lee CG, Park S, Ruoff RS et al (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95(2):023304

Wang L, Chen X, Yu A et al (2014) Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. Sci Rep 4:5470

He Q, Wu S, Yin Z et al (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772

Yavari F, Chen Z, Thomas AV et al (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166

Zhang Y, Tang TT, Girit C et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823

Kuila T, Bose S, Khanra P et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648

Wu JF, Xu MQ, Zhao GC (2010) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12(1):175–177

Shan C, Yang H, Han D et al (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25(6):1504–1508

Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81(1):334–338

Song Y, He Z, Hou H et al (2012) Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65

Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

He S, Song B, Li D et al (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459

Wang B, Chang YH, Zhi LJ (2011) High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater 26(1):31–35

Lu G, Ocola LE, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94(8):083111

Jaaniso R, Kahro T, Kozlova J et al (2014) Temperature induced inversion of oxygen response in CVD graphene on SiO2. Sens Actuators B 190:1006–1013

Huh S, Park J, Kim KS et al (2011) Selective n-type doping of graphene by photo-patterned gold nanoparticles. ACS Nano 5(5):3639–3644