Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery

Stem Cell Research - Tập 6 - Trang 195-205 - 2011
Erkan Kiris1,2, Jonathan E. Nuss1, James C. Burnett3,4, Krishna P. Kota1, Dawn C. Koh2, Laura M. Wanner1, Edna Torres-Melendez1, Rick Gussio4, Lino Tessarollo2, Sina Bavari1
1Department of Target Discovery and Experimental Microbiology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702–5011, USA
2Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
3SAIC Frederick, Inc., Target Structure-Based Drug Discovery Group (TSBDDG), National Cancer Institute at Frederick, MD 21702, USA
4TSBDDG, Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, MD 2170, USA

Tài liệu tham khảo

Adler, 2001, Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle, Toxicon, 39, 233, 10.1016/S0041-0101(00)00120-3 American Society for Aesthetic Plastic Surgery Antonucci, 2008, Long-distance retrograde effects of botulinum neurotoxin A, J. Neurosci., 28, 3689, 10.1523/JNEUROSCI.0375-08.2008 Apland, 1999, Peptides that mimic the carboxy-terminal domain of SNAP-25 block acetylcholine release at an Aplysia synapse, J. Appl. Toxicol., 19, S23, 10.1002/(SICI)1099-1263(199912)19:1+<S23::AID-JAT609>3.0.CO;2-X Apland, 2003, Inhibition of neurotransmitter release by peptides that mimic the N-terminal domain of SNAP-25, J. Protein Chem., 22, 147, 10.1023/A:1023423013741 Arnon, 2001, Botulinum toxin as a biological weapon: medical and public health management, JAMA, 285, 1059, 10.1001/jama.285.8.1059 Bajohrs, 2004, A molecular basis underlying differences in the toxicity of botulinum serotypes A and E, EMBO Rep., 5, 1090, 10.1038/sj.embor.7400278 Bakry, 1991, Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin, J. Pharmacol. Exp. Ther., 258, 830 Baldwin, 2009, Association of botulinum neurotoxins with synaptic vesicle protein complexes, Toxicon, 54, 570, 10.1016/j.toxicon.2009.01.040 Blasi, 1993, Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25, Nature, 365, 160, 10.1038/365160a0 Brin, 2009, Development of future indications for BOTOX, Toxicon, 54, 668, 10.1016/j.toxicon.2009.01.015 Burnett, 2005, The evolving field of biodefence: therapeutic developments and diagnostics, Nat. Rev., 4, 281 Caleo, 2009, A reappraisal of the central effects of botulinum neurotoxin type A: by what mechanism?, J. Neurochem., 109, 15, 10.1111/j.1471-4159.2009.05887.x Camu, 1992, Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor, J. Neurosci. Methods, 44, 59, 10.1016/0165-0270(92)90114-S Cashman, 1992, Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons, Dev. Dyn., 194, 209, 10.1002/aja.1001940306 Centers for Disease Control and Prevention Chen, 2009, Engineering botulinum neurotoxin to extend therapeutic intervention, Proc. Natl Acad. Sci. USA, 106, 9180, 10.1073/pnas.0903111106 Coffield, 2009, Neuritogenic actions of botulinum neurotoxin a on cultured motor neurons, J. Pharmacol. Exp. Ther., 330, 352, 10.1124/jpet.108.147744 Dolly, 2009, Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics, Curr. Opin. Pharmacol., 9, 326, 10.1016/j.coph.2009.03.004 Domeniconi, 2007, Pro-NGF secreted by astrocytes promotes motor neuron cell death, Mol. Cell. Neurosci., 34, 271, 10.1016/j.mcn.2006.11.005 Dong, 2004, Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells, Proc. Natl Acad. Sci. USA, 101, 14701, 10.1073/pnas.0404107101 Dong, 2006, SV2 is the protein receptor for botulinum neurotoxin A, Science, 312, 592, 10.1126/science.1123654 Fagan, 2009, Persistence of botulinum toxin in patients' serum: Alaska, 1959–2007, J. Infect. Dis., 199, 1029, 10.1086/597310 Foster, 2006, Re-engineering the target specificity of Clostridial neurotoxins—a route to novel therapeutics, Neurotox. Res., 9, 101, 10.1007/BF03354881 Grumelli, 2005, Internalization and mechanism of action of clostridial toxins in neurons, Neurotoxicology, 26, 761, 10.1016/j.neuro.2004.12.012 Hakami, 2010, Gaining ground: assays for therapeutics against botulinum neurotoxin, Trends Microbiol., 18, 164, 10.1016/j.tim.2010.02.001 Harper, 2004, Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats, Proc. Natl Acad. Sci. USA, 101, 7123, 10.1073/pnas.0401103101 Infant Botulism Treatment and Prevention Program Jankovic, 2004, Botulinum toxin in clinical practice, J. Neurol. Neurosurg. Psychiatry, 75, 951, 10.1136/jnnp.2003.034702 Kalandakanond, 2001, Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc, J. Pharmacol. Exp. Ther., 296, 980 Keller, 2001, The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A, J. Biol. Chem., 276, 13476, 10.1074/jbc.M010992200 Keller, 1999, Persistence of botulinum neurotoxin action in cultured spinal cord cells, FEBS Lett., 456, 137, 10.1016/S0014-5793(99)00948-5 Keller, 2004, Uptake of botulinum neurotoxin into cultured neurons, Biochemistry, 43, 526, 10.1021/bi0356698 Lamanna, 1959, The most poisonous poison, Science, 130, 763, 10.1126/science.130.3378.763 Larsen, 2009, U.S. Army botulinum neurotoxin (BoNT) medical therapeutics research program: past accomplishments and future directions, Drug Dev. Res., 266, 10.1002/ddr.20304 Li, 2008, Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules, Stem Cells, 26, 886, 10.1634/stemcells.2007-0620 Mahrhold, 2006, The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves, FEBS Lett., 580, 2011, 10.1016/j.febslet.2006.02.074 Miles, 2004, Functional properties of motoneurons derived from mouse embryonic stem cells, J. Neurosci., 24, 7848, 10.1523/JNEUROSCI.1972-04.2004 Montecucco, 2005, Botulinal neurotoxins: revival of an old killer, Curr. Opin. Pharmacol., 5, 274, 10.1016/j.coph.2004.12.006 Moscatelli, 2009, p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells, Exp. Cell Res., 315, 3220, 10.1016/j.yexcr.2009.08.014 Neale, 1999, Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal, J. Cell Biol., 147, 1249, 10.1083/jcb.147.6.1249 Nuss, 2010, Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies, J. Biomol. Screen., 15, 42, 10.1177/1087057109354779 Panchal, 2010, Development of high-content imaging assays for lethal viral pathogens, J. Biomol. Screen., 15, 755, 10.1177/1087057110374357 Pellett, 2007, A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies, FEBS Lett., 581, 4803, 10.1016/j.febslet.2007.08.078 Pitts, 2006, Neurotrophin and Trk-mediated signaling in the neuromuscular system, Int. Anesthesiol. Clin., 44, 21, 10.1097/00004311-200604420-00004 Rossetto, 1994, SNARE motif and neurotoxins, Nature, 372, 415, 10.1038/372415a0 Rossetto, 2006, Presynaptic enzymatic neurotoxins, J. Neurochem., 97, 1534, 10.1111/j.1471-4159.2006.03965.x Savino, 1991, Botulinum toxin therapy, Neurol. Clin., 9, 205, 10.1016/S0733-8619(18)30311-6 Sheridan, 2005, Primary cell culture for evaluation of botulinum neurotoxin antagonists, Toxicon, 45, 377, 10.1016/j.toxicon.2004.11.009 Simpson, 2004, Identification of the major steps in botulinum toxin action, Annu. Rev. Pharmacol. Toxicol., 44, 167, 10.1146/annurev.pharmtox.44.101802.121554 Simpson, 1994, Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins, J. Pharmacol. Exp. Ther., 269, 256 Soundararajan, 2006, Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons, J. Neurosci., 26, 3256, 10.1523/JNEUROSCI.5537-05.2006 Stahl, 2007, Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery, J. Biomol. Screen., 12, 370, 10.1177/1087057106299163 Wang, 2008, Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics, J. Biol. Chem., 283, 16993, 10.1074/jbc.M710442200 Wein, 2005, Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk, Proc. Natl Acad. Sci. USA, 102, 9984, 10.1073/pnas.0408526102 Wichterle, 2008, Differentiation of mouse embryonic stem cells to spinal motor neurons, Curr. Protoc. Stem Cell Biol., 5, 10.1002/9780470151808.sc01h01s5 Wichterle, 2002, Directed differentiation of embryonic stem cells into motor neurons, Cell, 110, 385, 10.1016/S0092-8674(02)00835-8 Wichterle, 2009, Xenotransplantation of embryonic stem cell-derived motor neurons into the developing chick spinal cord, Methods Mol. Biol., 482, 171, 10.1007/978-1-59745-060-7_11 Wiese, 2009, Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos, Nat. Protoc., 5, 31, 10.1038/nprot.2009.193