Nguồn gốc phôi thai của các tế bào cơ trơn mạch máu ở người: những ảnh hưởng đối với mô hình in vitro và ứng dụng lâm sàng

Cellular and Molecular Life Sciences - Tập 71 - Trang 2271-2288 - 2014
Sanjay Sinha1,2, Dharini Iyer1,2, Alessandra Granata1,2
1Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
2Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK

Tóm tắt

Các tế bào cơ trơn mạch máu (SMCs) xuất phát từ nhiều nguồn khác nhau trong quá trình phát triển, điều này mở ra khả năng rằng sự khác biệt về nguồn gốc phôi thai giữa các SMCs có thể góp phần vào sự phân bố đặc thù của các bệnh mạch máu. Trong bài đánh giá này, đầu tiên chúng tôi xem xét các con đường phát triển và nguồn gốc phôi thai của các SMC mạch máu, sau đó thảo luận về các chiến lược in vitro để dẫn xuất SMC từ tế bào gốc phôi người (ESCs) và tế bào gốc đa năng được cảm ứng (iPSCs). Chúng tôi sẽ đánh giá một cách chi tiết tiềm năng của việc mô hình hóa bệnh mạch máu sử dụng các SMC được chiết xuất từ iPSC và xem xét các tác động bệnh lý của nguồn gốc phôi thai không đồng nhất. Cuối cùng, chúng tôi đề cập đến vai trò của các SMC được chiết xuất từ ESC ở người trong tái tạo mạch máu điều trị và những thách thức còn lại trước khi y học tái tạo sử dụng các tế bào từ ESC hoặc iPSC trở nên trưởng thành.

Từ khóa

#tế bào cơ trơn mạch máu #nguồn gốc phôi thai #tế bào gốc phôi người #tế bào gốc đa năng được cảm ứng #mô hình hóa bệnh mạch máu #tái tạo mạch máu.

Tài liệu tham khảo

Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517 Schwartz SM, DeBlois D, O’Brien ER (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445–465 Haimovici H, Maier N (1964) Fate of aortic homografts in canine atherosclerosis. 3. Study of fresh abdominal an thoracic aortic implants into thoracic aorta: role of tissue susceptibility in atherogenesis. Arch Surg 89:961–969 VanderLaan PA, Reardon CA, Getz GS (2004) Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 24:12–22. doi:10.1161/01.ATV.0000105054.43931.f0 Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258. doi:10.1161/ATVBAHA.107.141069 Ruddy JM, Jones JA, Spinale FG, Ikonomidis JS (2008) Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 136:1123–1130. doi:10.1016/j.jtcvs.2008.06.027 Leroux-Berger M, Queguiner I, Maciel TT, Ho A, Relaix F, Kempf H (2011) Pathologic calcification of adult vascular smooth muscle cells differs on their crest or mesodermal embryonic origin. J Bone Miner Res 26:1543–1553. doi:10.1002/jbmr.382 DeBakey ME, Lawrie GM, Glaeser DH (1985) Patterns of atherosclerosis and their surgical significance. Ann Surg 201:115–131 DeBakey ME, Glaeser DH (2000) Patterns of atherosclerosis: effect of risk factors on recurrence and survival-analysis of 11,890 cases with more than 25-year follow-up. Am J Cardiol 85:1045–1053 Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395. doi:10.1038/74651 Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693. doi:10.1038/nm0603-685 Palis J, McGrath KE, Kingsley PD (1995) Initiation of hematopoiesis and vasculogenesis in murine yolk sac explants. Blood 86:156–163 Cumano A, Godin I (2007) Ontogeny of the hematopoietic system. Annu Rev Immunol 25:745–785. doi:10.1146/annurev.immunol.25.022106.141538 Wasteson P, Johansson BR, Jukkola T, Breuer S, Akyürek LM, Partanen J, Lindahl P (2008) Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135:1823–1832. doi:10.1242/dev.020958 Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616 DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451 Pouget C, Pottin K, Jaffredo T (2008) Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev Biol 315:437–447. doi:10.1016/j.ydbio.2007.12.045 Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol (Berl) 199:367–378 Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68:3–25 O’Rahilly R, Müller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192:73–84. doi:10.1159/000289817 Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232. doi:10.1006/dbio 1996.0068 Maeda J, Yamagishi H, McAnally J, Yamagishi C, Srivastava D (2006) Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn 235:701–710. doi:10.1002/dvdy.20686 Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML (2005) Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 281:78–90. doi:10.1016/j.ydbio.2005.02.012 Cheung C, Sinha S (2011) Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J Mol Cell Cardiol 51:651–664. doi:10.1016/j.yjmcc.2011.07.014 Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215. doi:10.1016/j.devcel.2011.07.001 Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068 Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M (2008) Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol 180:3183–3189 Wilm B, Ipenberg A, Hastie ND, Burch JBE, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132:5317–5328. doi:10.1242/dev.02141 Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BLM (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci USA 105:16626–16630. doi:10.1073/pnas.0808649105 Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53:983–995. doi:10.1002/hep.24119 Roper S, Hemberger M (2009) Defining pathways that enforce cell lineage specification in early development and stem cells. Cell Cycle 8:1515–1525 Gammill LS, Bronner-Fraser M (2003) Neural crest specification: migrating into genomics. Nat Rev Neurosci 4:795–805. doi:10.1038/nrn1219 Christiansen JH, Coles EG, Wilkinson DG (2000) Molecular control of neural crest formation, migration and differentiation. Curr Opin Cell Biol 12:719–724 O’Rahilly R, Müller F (2007) The development of the neural crest in the human. J Anat 211:335–351. doi:10.1111/j.1469-7580.2007.00773.x LaBonne C, Bronner-Fraser M (1998) Neural crest induction in Xenopus: evidence for a two-signal model. Development 125:2403–2414 Villanueva S, Glavic A, Ruiz P, Mayor R (2002) Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol 241:289–301. doi:10.1006/dbio 2001.0485 Muñoz-Sanjuán I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280. doi:10.1038/nrn786 Camus A, Perea-Gomez A, Moreau A, Collignon J (2006) Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev Biol 295:743–755. doi:10.1016/j.ydbio.2006.03.047 Epstein JA (2001) Developing models of DiGeorge syndrome. Trends Genet 17:S13–S17 Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA, Scambler PJ (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183. doi:10.1242/dev.028902 Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911 Burdsal CA, Damsky CH, Pedersen RA (1993) The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development 118:829–844 Parameswaran M, Tam PP (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17:16–28. doi:10.1002/dvg.1020170104 Poelmann RE (1981) The formation of the embryonic mesoderm in the early post-implantation mouse embryo. Anat Embryol (Berl) 162:29–40 Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372. doi:10.1038/nrg1837 LaBonne C, Whitman M (1994) Mesoderm induction by activin requires FGF-mediated intracellular signals. Development 120:463–472 Morkel M, Huelsken J, Wakamiya M, Ding J, van de Wetering M, Clevers H, Taketo MM, Behringer RR, Shen MM, Birchmeier W (2003) Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programms in mouse axis and mesoderm formation. Development 130:6283–6294. doi:10.1242/dev.00859 Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C (1997) Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124:2325–2334 Männer J, Pérez-Pomares JM, Macías D, Muñoz-Chápuli R (2001) The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 169:89–103. doi:http://www.ncbi.nlm.nih.gov/pubmed/11399849 Serluca FC (2008) Development of the proepicardial organ in the zebrafish. Dev Biol 315:18–27. doi:10.1016/j.ydbio.2007.10.007 Svensson EC (2010) Deciphering the signals specifying the proepicardium. Circ Res 106:1789–1790. doi:10.1161/CIRCRESAHA.110.222216 Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT (2008) Nk2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun 375:450–453. doi:10.1016/j.bbrc.2008.08.044 Schlueter J, Männer J, Brand T (2006) BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol 295:546–558. doi:10.1016/j.ydbio.2006.03.036 Kruithof BPT, van Wijk B, Somi S, Kruithof-de Julio M, Pérez Pomares JM, Weesie F, Wessels A, Moorman AFM, van den Hoff MJB (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 295:507–522. doi:10.1016/j.ydbio.2006.03.033 Pérez-Pomares JM, de la Pompa JL (2011) Signaling during epicardium and coronary vessel development. Circ Res 109:1429–1442. doi:10.1161/CIRCRESAHA.111.245589 Gittenberger-de Groot AC, Winter EM, Bartelings MM, Goumans MJ, DeRuiter MC, Poelmann RE (2012) The arterial and cardiac epicardium in development, disease and repair. Differentiation 84:41–53. doi:10.1016/j.diff.2012.05.002 Ishii Y, Langberg JD, Hurtado R, Lee S, Mikawa T (2007) Induction of proepicardial marker gene expression by the liver bud. Development 134:3627–3637. doi:10.1242/dev.005280 Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147 Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509. doi:10.1242/jcs.02553 Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63. doi:10.1038/nm979 Xiao L, Yuan X, Sharkis SJ (2006) Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24:1476–1486. doi:10.1634/stemcells.2005-0299 Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song C-Z, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D’Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119. doi:10.1182/blood-2007-03-082586 Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292 Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195. doi:10.1038/nature05950 Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199. doi:10.1038/nature05972 Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024. doi:10.1038/nbt1327 Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528. doi:10.1038/nature06894 Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, Yong J, Jiang W, Sun X, Du L, Ding M, Deng H (2008) Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111:1933–1941. doi:10.1182/blood-2007-02-074120 Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M, Rugg-Gunn P, Weber A, Pedersen RA (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signaling pathways. PLoS ONE 4:e6082. doi:10.1371/journal.pone.0006082 Cornell RA, Kimelman D (1994) Activin-mediated mesoderm induction requires FGF. Development 120:453–462 Xu R-H, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264. doi:10.1038/nbt761 Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, Callery EM, Trotter MW, Hemberger M, Smith JC, Bardwell L, Moffett A, Pedersen RA (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extrembryonic lineages. Cell Stem Cell 9:144–155. doi:10.1016/j.stem.2011.06.015 Cheung C, Bernardo AS, Trotter MWB, Pedersen RA, Sinha S (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30:165–173. doi:10.1038/nbt.2107 Stuhlmiller TJ, García-Castro MI (2012) Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 69:3715–3737. doi:10.1007/s00018-012-0991-8 Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186. doi:10.1038/nbt780 Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 275:403–421. doi:10.1016/j.ydbio.2004.08.031 Pankratz MT, Li X-J, Lavaute TM, Lyons EA, Chen X, Zhang S-C (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25:1511–1520. doi:10.1634/stemcells.2006-0707 Milet C, Monsoro-Burq AH (2012) Embryonic stem cell strategies to explore neural crest development in human embryos. Dev Biol 366:96–99. doi:10.1016/j.ydbio.2012.01.016 Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz K-L, Chien KR (2006) Multipotent embryonic isl1 + progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165. doi:10.1016/j.cell.2006.10.029 Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien C-L, Schultheiss TM, Orkin SH (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150. doi:10.1016/j.cell.2006.10.028 Rugg-Gunn PJ, Cox BJ, Lanner F, Sharma P, Ignatchenko V, McDonald ACH, Garner J, Gramolini AO, Rossant J, Kislinger T (2012) Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell 22:887–901. doi:10.1016/j.devcel.2012.01.005 Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801 Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, Vunjak-Novakovic G, Langer R (2007) Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res 101:286–294. doi:10.1161/CIRCRESAHA.107.150201 Huang H, Zhao X, Chen L, Xu C, Yao X, Lu Y, Dai L, Zhang M (2006) Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem Biophys Res Commun 351:321–327. doi:10.1016/j.bbrc.2006.09.171 Xie C-Q, Zhang J, Villacorta L, Cui T, Huang H, Chen YE (2007) A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells. Arterioscler Thromb Vasc Biol 27:e311–e312. doi:10.1161/ATVBAHA.107.154260 Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, Suzuki Y, Chao T-H, Sawada N, Fukunaga Y, Miyashita K, Park K, Oyamada N, Sawada N, Taura D, Tamura N, Kondo Y, Nito S, Suemori H, Nakatsuji N, Nishikawa S, Nakao K (2007) Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler Thromb Vasc Biol 27:2127–2134. doi:10.1161/ATVBAHA.107.143149 Yamahara K, Sone M, Itoh H, Yamashita JK, Yurugi-Kobayashi T, Homma K, Chao T-H, Miyashita K, Park K, Oyamada N, Sawada N, Taura D, Fukunaga Y, Tamura N, Nakao K (2008) Augmentation of neovascularization in hindlimb ischemia by combined transplantation of human embryonic stem cells-derived endothelial and mural cells. PLoS ONE 3:e1666. doi:10.1371/journal.pone.0001666 Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29:4471–4480. doi:10.1016/j.biomaterials.2008.08.012 Vallier L, Pedersen R (2008) Differentiation of human embryonic stem cells in adherent and in chemically defined culture conditions. Curr Protoc Stem Cell Biol Chapter 1, Unit 1D.4.1–1D.4.7. doi:10.1002/9780470151808.sc01d04s4 Xie C-Q, Huang H, Wei S, Song L-S, Zhang J, Ritchie RP, Chen L, Zhang M, Chen YE (2009) A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev 18:741–748. doi:10.1089/scd 2008.0179 Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–117. doi:10.1038/nature08191 Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C (2011) Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 129:29–49. doi:10.1016/j.pharmthera.2010.10.004 Xie C, Ritchie RP, Huang H, Zhang J, Chen YE (2011) Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler Thromb Vasc Biol 31:1485–1494. doi:10.1161/ATVBAHA.110.221101 Topouzis S, Majesky MW (1996) Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol 178:430–445. doi:10.1006/dbio 1996.0229 Owens AP, Subramanian V, Moorleghen JJ, Guo Z, McNamara CA, Cassis LA, Daugherty A (2010) Angiotensin II induces a region-specific hyperplasia of the ascending aorta through regulation of inhibitor of differentiation 3. Circ Res 106:611–619. doi:10.1161/CIRCRESAHA.109.212837 Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85:331–343 Chen S, Lechleider RJ (2004) Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94:1195–1202. doi:10.1161/01.RES.0000126897.41658.81 Wang A, Tang Z, Li X, Jiang Y, Tsou DA, Li S (2012) Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs 195:5–14. doi:10.1159/000331412 El-Mounayri O, Mihic A, Shikatani EA, Gagliardi M, Steinbach SK, Dubois N, Dacosta R, Li R-K, Keller G, Husain M (2013) Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovasc Res 98:125–135. doi:10.1093/cvr/cvs357 Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125:87–99. doi:10.1161/CIRCULATIONAHA.111.048264 Giudice A, Trounson A (2008) Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2:422–433. doi:10.1016/j.stem.2008.04.003 Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32:1104–1115. doi:10.1161/ATVBAHA.111.237693 Lindsay ME, Dietz HC (2011) Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473:308–316. doi:10.1038/nature10145 Bruemmer D, Daugherty A, Lu H, Rateri DL (2011) Relevance of angiotensin II-induced aortic pathologies in mice to human aortic aneurysms. Ann NY Acad Sci 1245:7–10. doi:10.1111/j.1749-6632.2011.06332.x Gadson PF, Dalton ML, Patterson E, Svoboda DD, Hutchinson L, Schram D, Rosenquist TH (1997) Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-beta1: regulation of c-myb and alpha1 (I) procollagen genes. Exp Cell Res 230:169–180. doi:10.1006/excr 1996.3398 Jaffe M, Sesti C, Washington IM, Du L, Dronadula N, Chin MT, Stolz DB, Davis EC, Dichek DA (2012) Transforming growth factor-β signaling in myogenic cells regulates vascular morphogenesis, differentiation, and matrix synthesis. Arterioscler Thromb Vasc Biol 32:e1–e11. doi:10.1161/ATVBAHA.111.238410 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019 Liu G-H, Barkho BZ, Ruiz S, Diep D, Qu J, Yang S-L, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J, Izpisua Belmonte JC (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225. doi:10.1038/nature09879 Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse H-F, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45. doi:10.1016/j.stem.2010.12.002 Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim K-Y, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park I-H, Yue L, Qyang Y (2012) Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation 126:1695–1704. doi:10.1161/CIRCULATIONAHA.112.116996 Sinha S (2012) Vascular disease in a dish: all the right ingredients? Circulation 126:1676–1677. doi:10.1161/CIRCULATIONAHA.112.134387 Hu B-Y, Weick JP, Yu J, Ma L-X, Zhang X-Q, Thomson JA, Zhang S-C (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340. doi:10.1073/pnas.0910012107 Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262 Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapière CM (1996) Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg 24:127–133 Ramirez F, Sakai LY (2010) Biogenesis and function of fibrillin assemblies. Cell Tissue Res 339:71–82. doi:10.1007/s00441-009-0822-x Loeys B, Van Maldergem L, Mortier G, Coucke P, Gerniers S, Naeyaert J-M, De Paepe A (2002) Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum Mol Genet 11:2113–2118 Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, Zeeshan A, Bavaria JE, Gorman JH, Spinale FG, Gorman RC (2006) Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation 114:I365–I370. doi:10.1161/CIRCULATIONAHA.105.000810 Chung AWY, Yang HHC, Radomski MW, van Breemen C (2008) Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102:e73–e85. doi:10.1161/CIRCRESAHA.108.174367 Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411. doi:10.1038/ng1116 Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361. doi:10.1126/science.1192149 Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281. doi:10.1038/ng1511 Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B (1988) Ehlers-Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem 263:6226–6232 Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM (2007) Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39:1488–1493. doi:10.1038/ng.2007.6 Zhu L, Vranckx R, Khau Van Kien P, Lalande A, Boisset N, Mathieu F, Wegman M, Glancy L, Gasc J-M, Brunotte F, Bruneval P, Wolf J-E, Michel J-B, Jeunemaitre X (2006) Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:343–349. doi:10.1038/ng1721 Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, Guo D, Estrera AL, Safi HJ, Brasier AR, Vick GW, Marian AJ, Raman CS, Buja LM, Milewicz DM (2007) MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 16:2453–2462. doi:10.1093/hmg/ddm201 Kalimo H, Ruchoux M-M, Viitanen M, Kalaria RN (2002) CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol 12:371–384 Tikka S, Mykkänen K, Ruchoux M-M, Bergholm R, Junna M, Pöyhönen M, Yki-Järvinen H, Joutel A, Viitanen M, Baumann M, Kalimo H (2009) Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain 132:933–939. doi:10.1093/brain/awn364 Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cécillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710. doi:10.1038/383707a0 Trigueros-Motos L, González-Granado JM, Cheung C, Fernández P, Sánchez-Cabo F, Dopazo A, Sinha S, Andrés V (2013) Embryological-Origin-dependent differences in hox expression in adult aorta: role in regional phenotypic variability and regulation of NF-κB activity. Arterioscler Thromb Vasc Biol 33:1248–1256. doi:10.1161/ATVBAHA.112.300539 Samani NJ, Raitakari OT, Sipilä K, Tobin MD, Schunkert H, Juonala M, Braund PS, Erdmann J, Viikari J, Moilanen L, Taittonen L, Jula A, Jokinen E, Laitinen T, Hutri-Kähönen N, Nieminen MS, Kesäniemi YA, Hall AS, Hulkkonen J, Kähönen M, Lehtimäki T (2008) Coronary artery disease-associated locus on chromosome 9p21 and early markers of atherosclerosis. Arterioscler Thromb Vasc Biol 28:1679–1683. doi:10.1161/ATVBAHA.108.170332 Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810–834. doi:10.1161/CIRCRESAHA.113.300219 Park S-W, Jun Koh Y, Jeon J, Cho Y-H, Jang M-J, Kang Y, Kim M-J, Choi C, Sook Cho Y, Chung H-M, Koh GY, Han Y-M (2010) Efficient differentiation of human pluripotent stem cells into functional CD34 + progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood 116:5762–5772. doi:10.1182/blood-2010-04-280719 Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, Lam FF-Y, Kang S, Xia JC, Lai W-H, Au K-W, Chow YY, Siu C-W, Lee C-N, Tse H-F (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121:1113–1123. doi:10.1161/CIRCULATIONAHA.109.898312 Li Z, Wilson KD, Smith B, Kraft DL, Jia F, Huang M, Xie X, Robbins RC, Gambhir SS, Weissman IL, Wu JC (2009) Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS ONE 4:e8443. doi:10.1371/journal.pone.0008443 Xiong Q, Hill KL, Li Q, Suntharalingam P, Mansoor A, Wang X, Jameel MN, Zhang P, Swingen C, Kaufman DS, Zhang J (2011) A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells 29:367–375. doi:10.1002/stem.580 Kreutziger KL, Muskheli V, Johnson P, Braun K, Wight TN, Murry CE (2011) Developing vasculature and stroma in engineered human myocardium. Tissue Eng Part A 17:1219–1228. doi:10.1089/ten.TEA 2010.0557 Hibino N, Duncan DR, Nalbandian A, Yi T, Qyang Y, Shinoka T, Breuer CK (2012) Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 143:696–703. doi:10.1016/j.jtcvs.2011.06.046 Sundaram S, Echter A, Sivarapatna A, Qiu C, Niklason L (2013) Small diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A. doi:10.1089/ten.TEA.2012.0738 James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282. doi:10.1242/dev.01706 Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA 103:16806–16811. doi:10.1073/pnas.0603916103 Aberdam E, Barak E, Rouleau M, de LaForest S, Berrih-Aknin S, Suter DM, Krause K-H, Amit M, Itskovitz-Eldor J, Aberdam D (2008) A pure population of ectodermal cells derived from human embryonic stem cells. Stem Cells 26:440–444. doi:10.1634/stemcells.2007-0588 D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541. doi:10.1038/nbt1163 Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135:2969–2979. doi:10.1242/dev.021121 Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE (2010) Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS ONE 5:e11134. doi:10.1371/journal.pone.0011134 Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103:6907–6912. doi:10.1073/pnas.0602280103 Touboul T, Hannan NRF, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51:1754–1765. doi:10.1002/hep.23506 D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401. doi:10.1038/nbt1259 Baharvand H, Mehrjardi N-Z, Hatami M, Kiani S, Rao M, Haghighi M-M (2007) Neural differentiation from human embryonic stem cells in a defined adherent culture condition. Int J Dev Biol 51:371–378. doi:10.1387/ijdb.72280hb Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548. doi:10.1073/pnas.0404700101 Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396. doi:10.1002/glia.20127 Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240. doi:10.1016/j.stem.2010.12.008 Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J, Pébay A, Young HM, Newgreen DF, Dottori M (2009) Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 27:2896–2905. doi:10.1002/stem.208 Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5:688–701. doi:10.1038/nprot.2010.35 Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X, Xu Y, Cao H, Meng Q, Chen L, Tian T, Wang X, Li P, Hescheler J, Ji G, Ma Y (2011) Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 21:579–587. doi:10.1038/cr.2010.163