Embeddings of Sobolev-type spaces into generalized Hölder spaces involving $$k$$ -modulus of smoothness

Springer Science and Business Media LLC - Tập 194 - Trang 425-450 - 2013
Amiran Gogatishvili1, Susana D. Moura2, Júlio S. Neves2, Bohumír Opic3
1Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague 1, Czech Republic
2Department of Mathematics, CMUC, University of Coimbra, Coimbra, Portugal
3Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Prague 8, Czech Republic

Tóm tắt

We use an estimate of the $$k$$ -modulus of smoothness of a function $$f$$ such that the norm of its distributional gradient $$|\nabla ^kf|$$ belongs locally to the Lorentz space $$L^{n/k, 1}({\mathbb {R}}^n),\,k \in {\mathbb {N}},\,k\le n$$ , and we prove its reverse form to establish necessary and sufficient conditions for continuous embeddings of Sobolev-type spaces. These spaces are modelled upon rearrangement-invariant Banach function spaces $$X({\mathbb {R}}^n)$$ . Target spaces of our embeddings are generalized Hölder spaces defined by means of the $$k$$ -modulus of smoothness $$(k\in {\mathbb {N}})$$ . General results are illustrated with examples.

Tài liệu tham khảo

Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) 175, 1–72 (1980) Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press, New York (1988) Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987) Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings. Commun. Partial Differ. Equ. 5, 773–789 (1980) Carro, M.J., Del Amo, A.G., Soria, J.: Weak-type weights and normable Lorentz spaces. Proc. Am. Math. Soc. 124(3), 849–857 (1996) Carro, M.J., Pick, L., Soria, J., Stepanov, V.D.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4(3), 397–428 (2001) Cianchi, A., Pick, L.: Sobolev embeddings into spaces of Campanato, Morrey, and Hölder type. J. Math. Anal. Appl. 282, 128–150 (2003) Cianchi, A., Randolfi, M.: On the modulus of continuity of weakly differentiable functions. Indiana Univ. Math. J. 60, 1939–1974 (2011) DeVore, R.A., Lorentz, G.G.: Constructive Approximation, Grundlehren der mathematischen Wissenschaften—A series of Comprehensive Studies in Mathematics, vol. 303. Springer, Berlin (1993) DeVore, R.A., Scherer, K.: Interpolation of linear-operators on Sobolev spaces. Ann. Math. 109(3), 583–599 (1979) DeVore, R.A., Sharpley, R.C.: On the differentiability of functions in \({R}^n\). Proc. Am. Math. Soc. 91, 326–328 (1984) Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces and Embeddings. Springer, Berlin (2004) Edmunds, D.E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146(1), 116–150 (1997) Edmunds, D.E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170, 307–355 (2000) Evans, W.D., Opic, B.: Real interpolation with logarithmic functors and reiteration. Can. J. Math. 52, 920–960 (2000) Gogatishvili, A., Johansson, M., Okpoti, C.A., Persson, L.-E.: Characterisation of embeddings in Lorentz spaces. Bull. Aust. Math. Soc. 76(1), 69–92 (2007) Gogatishvili, A., Neves, J.S., Opic, B.: Optimal embeddings and compact embeddings of Bessel-potential-type spaces. Math. Z. 262(3), 645–682 (2009) Gogatishvili, A., Neves, J.S., Opic, B.: Optimal embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving \(k\)-modulus of smoothness. Potential Anal. 32(3), 201–228 (2010) Gogatishvili, A., Neves, J.S., Opic, B.: Sharp estimates of the \(k\)-modulus of smoothness of Bessel potentials. J. Lond. Math. Soc. 81(2), 608–624 (2010) Gogatishvili, A., Neves, J.S., Opic, B.: Compact embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving \(k\)-modulus of smoothness. Z. Anal. Anwendungen 30(1), 1–27 (2011) Gogatishvili, A., Opic, B., Trebels, W.: Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr. 278, 86–107 (2005) Gurka, P., Opic, B.: Sharp embeddings of Besov-type spaces. J. Comput. Appl. Math. 208, 235–269 (2007) Kolyada, V.I., Pérez Lázaro, F.J.: Inequalities for partial moduli of continuity and partial derivatives. Constr. Approx. 34(1), 23–59 (2011) Marić, V.: Regular Variation and Differential Equations. Lecture Notes in Mathematics, vol. 1726. Springer, Berlin (2000) Neves, J.S.: Lorentz–Karamata spaces, Bessel and Riesz potentials and embeddings, Dissertationes Math. (Rozprawy Mat.) 405, 1–46 (2002) Opic, B., Pick, L.: On generalized Lorentz–Zygmund spaces. Math. Inequal. Appl. 2(3), 391–467 (1999) Sawyer, E.T.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96, 145–158 (1990) Soria, J.: Lorentz spaces of weak-type. Q. J. Math. 49(193), 93–103 (1998) Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970) Zygmund, A.: Trigonometric Series, vol. I. Cambridge University Press, Cambridge (1957)