Embedding operators of Sobolev spaces with variable exponents and applications

Analysis Mathematica - Tập 41 - Trang 273-297 - 2015
Veli B. Shakhmurov1,2
1Department of Mechanical Engineering, Okan University, Istanbul, Turkey
2Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan

Tóm tắt

We introduce the vector-valued Sobolev spaces W m,p(x) (Ω;E 0,E) with variable exponent associated with two Banach spaces E 0 and E. The most regular space E α is found such that the differential operator D α is bounded and compact from W m,p(x)(Ω;E 0,E) to L q(x)(Ω;E α ), where E α are interpolation spaces between E 0 and E is depending on α = (α 1, α 2,..., α n ) and the positive integer m, where Ω ⊂ ℝ n is a region such that there exists a bounded linear extension operator from W m,p(x) (Ω;E 0,E) to W m,p(x) (ℝ n ;E (A), E). The function p(x) is Lipschitz continuous on Ω and q(x) is a measurable function such that $$1 < p(x) \leqslant q(x) \leqslant \tfrac{{np(x)}} {{n - mp(x)}}$$ for a.e. $$x \in \bar \Omega $$ . Ehrling–Nirenberg–Gagilardo type sharp estimates for mixed derivatives are obtained. Then, by using this embedding result, the separability properties of abstract differential equations are established.

Tài liệu tham khảo

R. A. Adams, Sobolev Spaces, Academic Press (New York, 1975). A. Almeida and S. Samko, Pointwise inequalities in variable Sobolev spaces and applications, Z. Anal. Anwend., 26(2007), 179–193. O. V. Besov, V. P. Ilin, and S. M. Nikolskii, Integral representations of functions and embedding theorems, Fizmatlit “Nauka” (Moscow, 1975) (in Russian). D. L. Burkholder, geometrical conditions that implies the existence certain of singular integral of Banach-space-valued functions, Proc. conf. Harmonic analysis in honor of Antoni Zygmund, Chicago, 1981, Wadsworth (Belmont, CA, 1983), 270–286. J. Bourgain, Some remarks on Banach spaces in which martingale differences are unconditional, Arkiv Math., 21(1983), 163–168. A. Cianchi, A sharp embedding theorem for Orlicz–Sobolev spaces, Indiana Univ. Math. J., 45(1996), 39–65. B. Cekic, R. Mashiyev, and G. T. Alisoy, On the Sobolev-type inequality for Lebesgue spaces with a variable exponent, Int. Math. Forum, 1(2006), 1313–1323. R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Mem. Amer. Math. Soc., 166 (2003). T. K. Donaldson and N. S. Trudinger, Orlicz–Sobolev spaces and imbedding theorems, J. Funct. Anal., 8(1971), 52–75. L. Diening, Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces L p(x) and W k,p(x), Math. Nachr., 263(2004), 31–43. L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer (Heidelberg, 2011). D. E. Edmunds, and J. Rakosnik, Sobolev embedding with variable exponent, Studia Math., 143(2000), 267–293. O. Kovacik and J. Rakosnik, On spaces L p(x) and W k,p(x), Czechoslovak Math. J., 41(1991), 592–618. V. Kokilashvili and S. Samko, On Sobolev theorem for Riesz type potential in Lebesgue spaces with variable exponent, Z. Anal. Anwendungen, 22(2003), 899–910. J-L. Lions and E. Magenes, Nonhomogenous Boundary Value Problems, Mir (Moscow, 1971) (in Russian). P. I. Lizorkin, V. B. Shakhmurov, Embedding theorems for vector-valued functions. II, Izv. Vussh. Uchebn. Zaved. Mat., 1989, 47–54 (in Russian). P. I. Lizorkin, V. B. Shakhmurov, Embedding theorems for vector-valued functions I, Izv. Vussh. Uchebn. Zaved. Mat., 1989, 70–79 (in Russian). J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag (Berlin, 1983). P. Marcellini, Regularity and existence of solutions of elliptic equations with p, qgrowth conditions, J. Differential Equations, 90(1991), 1–30. Y. Mizuta, T. Ohno and T. Shimomura, Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space L p(·)(log)q(·), J. Math. Anal. Appl., 345(2008), 70–85. I. P. Natanson, Theory of Functions of a Real Variable, GITTL (Moscow, 1950) (in Russian). H. Hudzik, On generalized Orlicz–Sobolev space, Funct. Approx. Comment. Math., 4(1976), 37–51. S. L. Sobolev, Embedding theorems of sets of abstract functions, Dokl. Akad. Nauk SSSR, 115(1957), 57–59. S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators, Integral Transforms Spec. Funct., 16(2005), 461–482. V. B. Shakhmurov, Imbedding theorems and their applications to degenerate equations, Differential equations, 24(1988), 475–482. V. B. Shakhmurov, Theorems on the embedding of abstract function spaces and their applications, Math. Sb., 134(1987), 260–273 (in Russian). V. B. Shakhmurov, Embedding theorems and maximal regular differential operator equations in Banach-valued function spaces, J. Inequal. Appl., 2(2005), 329–345. V. B. Shakhmurov, Embedding and maximal regular differential operators in Banach-valued weighted spaces, Acta Math. Sinica, 22(2006), 1493–1508. H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North- Holland (Amsterdam, 1978). X.-L. Fan, J. Shen, and D. Zhao, Sobolev imbedding theorems for W k,p(x), J. Math. Anal. Appl., 262(2001), 749–760. D. Zhao, W. J. Qiang, and X.-L. Fan, On the generalized Orlicz spaces L p(x), J. Gansu Sci., 9(1997), 1–7. V. Zhikov, Passage to the limit in nonlinear variational problems, Mat. Sb., 183(1992), 47–84 (in Russian).