Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models

Medical Image Analysis - Tập 62 - Trang 101670 - 2020
Jwala Dhamala1, Pradeep Bajracharya1, Hermenegild J. Arevalo2, John L. Sapp3, B. Milan Horácek3, Katherine C. Wu4, Natalia A. Trayanova5, Linwei Wang1
1Rochester Institute of Technology, Rochester, NY, USA
2Johns Hopkins University, Baltimore, MD, USA
3Dalhousie University, Halifax, Canada
4Johns Hopkins University, Baltimore, Md., USA
5Johns Hopkins University, Baltimore, MD USA

Tài liệu tham khảo

Aliev, 1996, A simple two-variable model of cardiac excitation, Chaos Solitons Fractals, 7, 293, 10.1016/0960-0779(95)00089-5 Arevalo, 2016, Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models, Nat. Commun., 7, 10.1038/ncomms11437 Brochu, E., Cora, V. M., De Freitas, N., 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599. Bronstein, 2017, Geometric deep learning: going beyond Euclidean data, IEEE Signal Process. Mag., 34, 18, 10.1109/MSP.2017.2693418 Cerqueira, 2002, Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association, Circulation, 105, 539, 10.1161/hc0402.102975 Chinchapatnam, 2009, Estimation of volumetric myocardial apparent conductivity from endocardial electro-anatomical mapping, 2907 Clayton, 2011, Models of cardiac tissue electrophysiology: progress, challenges and open questions, Progress in Biophys. Mol. Biol., 104, 22, 10.1016/j.pbiomolbio.2010.05.008 Delingette, 2012, Personalization of cardiac motion and contractility from images using variational data assimilation, IEEE Trans. Biomed. Eng., 59, 20, 10.1109/TBME.2011.2160347 Dhamala, 2017, Spatially-adaptive multi-scale optimization for local parameter estimation in cardiac electrophysiology, IEEE Trans. Med. Imaging, 10.1109/TMI.2017.2697820 Dhamala, 2018, High-dimensional Bayesian optimization of personalized cardiac model parameters via an embedded generative model, 499 Dhamala, 2016, Spatially-adaptive multi-scale optimization for local parameter estimation: application in cardiac electrophysiological models, 282 Dhamala, 2017, Quantifying the uncertainty in model parameters using Gaussian process-based Markov Chain Monte Carlo: An application to cardiac electrophysiological models, 223 Fang, 2009, Tetrahedral mesh generation from volumetric binary and grayscale images, 1142 Giffard-Roisin, 2017, Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping, IEEE Trans. Biomed. Eng., 64, 2206, 10.1109/TBME.2016.2629849 Goodfellow, 2014, Generative adversarial nets, 2672 Hu, 2013, Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation, PLoS One, 8, e60287, 10.1371/journal.pone.0060287 Kandasamy, 2015, High dimensional Bayesian optimisation and bandits via additive models, 295 Kingma Kingma Lê, 2016, MRI based Bayesian personalization of a tumor growth model, IEEE Trans. Med. Imaging, 35, 2329, 10.1109/TMI.2016.2561098 Li Maaten, 2008, Visualizing data using t-SNE, J. Mach. Learn. Res., 9, 2579 Makhzani Marchesseau, 2012, Cardiac mechanical parameter calibration based on the unscented transform, 41 Mitchell, 2003, A two-current model for the dynamics of cardiac membrane, Bull. Math. Biol., 65, 767, 10.1016/S0092-8240(03)00041-7 Moireau, 2013, Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data, Biomech. Modeling Mechanobiol., 12, 475, 10.1007/s10237-012-0418-3 Myronenko, 2010, Point set registration: Coherent point drift, IEEE Trans. Pattern Anal. Mach. Intell., 32, 2262, 10.1109/TPAMI.2010.46 Nash, 1998 Nielsen, 1991, Mathematical model of geometry and fibrous structure of the heart, Am. J. Physiol. Heart Circ. Physiol., 260, H1365, 10.1152/ajpheart.1991.260.4.H1365 Otsu, 1975, A threshold selection method from gray-level histograms, Automatica, 11, 23 Plonsey, 1969 Prakosa, 2018, Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia, Nat. Biomed. Eng., 2, 732, 10.1038/s41551-018-0282-2 Rasmussen, 2006, 1 Relan, 2011, Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing, IEEE Transactions on Biomedical Engineering, 58, 3339, 10.1109/TBME.2011.2107513 Relan, 2009, Parameter estimation of a 3d cardiac electrophysiology model including the restitution curve using optical and MR data, 1716 Rezende Rogers, 1994, A collocation-galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41, 743, 10.1109/10.310090 Sapp, 2012, Inverse solution mapping of epicardial potentials: Quantitative comparison to epicardial contact mapping, Circ. Arrhythmia Electrophysiol., CIRCEP Sermesant, 2012, Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in crt: a preliminary clinical validation, Med. Image Anal., 16, 201, 10.1016/j.media.2011.07.003 Shahriari, 2016, Taking the human out of the loop: A review of Bayesian optimization, Proc. IEEE, 104, 148, 10.1109/JPROC.2015.2494218 Siivola, 2018, Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations, 1 Taylor, 2009, Patient-specific modeling of cardiovascular mechanics, Annu. Rev. Biomed. Eng., 11, 109, 10.1146/annurev.bioeng.10.061807.160521 Tusscher, 2008, Modelling of the ventricular conduction system, Progr. Biophys. Mol. Biol., 96, 152, 10.1016/j.pbiomolbio.2007.07.026 Wang, 2018, Non-invasive epicardial and endocardial electrocardiographic imaging for scar-related ventricular tachycardia, Ep Europace, 20, f263, 10.1093/europace/euy082 Wang, 2010, Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials, IEEE Trans. Biomed. Eng., 57, 296, 10.1109/TBME.2009.2024531 Wong, 2012, Strain-based regional nonlinear cardiac material properties estimation from medical images, 617 Wong, 2015, Velocity-based cardiac contractility personalization from images using derivative-free optimization, J. Mech. Behav. Biomed. Mater., 43, 35, 10.1016/j.jmbbm.2014.12.002 Zahid, 2016, Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter., Heart Rhythm, 4, 1687, 10.1016/j.hrthm.2016.04.009 Zettinig, 2013, Fast data-driven calibration of a cardiac electrophysiology model from images and ECG, 1