Elucidating the functional impact of G137V and G144R variants in Maroteaux Lamy’s Syndrome by Molecular Dynamics Simulation

Molecular Diversity - Trang 1-15 - 2023
N. Madhana Priya1, P. Archana Pai1, D. Thirumal Kumar2, R. Gnanasambandan3, R. Magesh1
1Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
2Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education, Chennai, India
3Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Vellore, India

Tóm tắt

Mucopolysaccharidoses VI (Maroteaux Lamy syndrome) is a metabolic disorder due to the loss of enzyme activity of N-acetyl galactosamine-4-sulphatase arising from mutations in the ARSB gene. The mutated ARSB is the origin for the accumulation of GAGs within the lysosome leading to severe growth deformities, causing lysosomal storage disease. The main focus of this study is to identify the deleterious variants by applying bioinformatics tools to predict the conservation, pathogenicity, stability, and effect of the ARSB variants. We examined 170 missense variants, of which G137V and G144R were the resultant variants predicted detrimental to the progression of the disease. The native along with G137V and G144R structures were fixed as the receptors and subjected to Molecular docking with the small molecule Odiparcil to analyze the binding efficiency and the varied interactions of the receptors towards the drug. The interaction resulted in similar docking scores of − 7.3 kcal/mol indicating effective binding and consistent interactions of the drug with residues CYS117, GLN118, THR182, and GLN517 for native, along with G137V and G144R structures. Molecular Dynamics were conducted to validate the stability and flexibility of the native and variant structures on ligand binding. The overall study indicates that the drug has similar therapeutic towards the native and variant based on the higher binding affinity and also the complexes show stability with an average of 0.2 nm RMS value. This can aid in the future development therapeutics for the Maroteaux Lamy syndrome.

Tài liệu tham khảo

Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5(7):554–565. https://doi.org/10.1038/nrm1423 Filocamo M, Morrone A (2011) Lysosomal storage disorders: molecular basis and laboratory testing. Hum Genomics 5(3):1–14. https://doi.org/10.1186/1479-7364-5-3-156 Rajkumar V, Dumpa V (2022) Lysosomal storage disease. In: StatPearls. StatPearls Publishing, Treasure Island Lachmann RH (2020) Treating lysosomal storage disorders: what have we learnt? J Inherit Metab Dis 43(1):125–132. https://doi.org/10.1002/jimd.12131 Andrade I, Ribeiro R, Carneiro ZA, Giugliani R, Pereira C, Cozma C et al (2022) Fifteen years of enzyme replacement therapy for mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome): a case report. J Med Case Rep 16(1):46. https://doi.org/10.1186/s13256-021-03240-3 Tomatsu S, Pitz S, Hampel U (2019) Ophthalmological findings in mucopolysaccharidoses. J Clin Med 8:1467. https://doi.org/10.3390/jcm8091467 Pachajoa H, Rodriguez CA (2014) Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome) in the pre-Columbian culture of Colombia. Colomb Med 45(2):85–87 Maroteaux P, Leveque B, Marie J, Lamy M (1963) A new dysostosis with urinary elimination of chondroitin sulfate B. Presse Med 71:1849–1852 Valayannopoulos V, Nicely H, Harmatz P, Turbeville S (2010) Mucopolysaccharidosis VI. Orphanet J Rare Dis 5(1):1–20. https://doi.org/10.1186/1750-1172-5-5 Harmatz P, Shediac R (2017) Mucopolysaccharidosis VI: pathophysiology, diagnosis and treatment. Front Biosci 22(3):385–406. https://doi.org/10.2741/4490 D’Avanzo F, Zanetti A, De Filippis C, Tomanin R (2021) Mucopolysaccharidosis Type VI, an updated overview of the disease. Int J Mol Sci. https://doi.org/10.3390/ijms222413456 Harmatz P, Hendriksz CJ, Lampe C, McGill JJ, Parini R, Leão-Teles E et al (2017) The effect of galsulfase enzyme replacement therapy on the growth of patients with mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Mol Genet Metab 122(1–2):107–112. https://doi.org/10.1016/j.ymgme.2017.03.008 Horovitz DDG, Leão EKEA, Ribeiro EM, Martins AM, Barth AL, Neri JICF et al (2021) Long-term impact of early initiation of enzyme replacement therapy in 34 MPS VI patients: a resurvey study. Mol Genet Metab 133(1):94–99. https://doi.org/10.1016/j.ymgme.2021.02.006 Macauley SL (2016) Combination therapies for lysosomal storage diseases: a complex answer to a simple problem. Pediatr Endocrinol Rev 13(Suppl 1):639–648 Tkachyova I (2013) Developing a potential substrate reduction therapy for six mucopolysaccharidoses by decreasing NDST1 activity Guffon N, Chowdary P, Teles EL, Hughes D, Hennermann JB, Huot-Marchand P et al (2022) Oral treatment for mucopolysaccharidosis VI: outcomes of the first phase IIa study with odiparcil. J Inherit Metab Dis 45(2):340–352. https://doi.org/10.1002/jimd.12467 Entchev E, Antonelli S, Mauro V, Cimbolini N, Jantzen I, Roussey A et al (2022) MPS VI associated ocular phenotypes in an MPS VI murine model and the therapeutic effects of odiparcil treatment. Mol Genet Metab 135:143–153. https://doi.org/10.1016/j.ymgme.2021.07.008 Harmatz PR, Garcia P, Guffon N, Randolph LM, Shediac R, Braunlin E et al (2014) Galsulfase (Naglazyme®) therapy in infants with mucopolysaccharidosis VI. J Inherit Metab Dis 37(2):277. https://doi.org/10.1007/s10545-013-9654-7 Mathew J, Jagadeesh SM, Bhat M, Udhaya Kumar S, Thiyagarajan S, Srinivasan S (2015) Mutations in ARSB in MPS VI patients in India. Mol Genet Metab Rep 4:53–61. https://doi.org/10.1016/j.ymgmr.2015.06.002 Poterala-Hejmo A, Golda A, Pacholczyk M, Student S, Tylki-Szymańska A, Lalik A (2020) A possible role for arylsulfatase G in dermatan sulfate metabolism. Int J Mol Sci. https://doi.org/10.3390/ijms21144913 Jafaryazdi R, Shams S, Isaian A, Ebadi E, Safaralizadeh R, Teimourian S (2018) A novel compound heterozygote mutation in the ARSB gene in a patient with Maroteaux-Lamy syndrome and its Insilico evaluation. Meta Gene 18:127–131. https://doi.org/10.1016/j.mgene.2018.08.013 Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L et al (2020) The Human Gene Mutation Database (HGMD): optimizing its use in a clinical diagnostic or research setting. Hum Genet 139(10):1197–1207. https://doi.org/10.1007/s00439-020-02199-3 Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D1067. https://doi.org/10.1093/nar/gkx1153 Roberts RJ (2001) PubMed central: the GenBank of the published literature. Proc Natl Acad Sci USA 98(2):381–382. https://doi.org/10.1073/pnas.98.2.381 Munnolli SS (2023) Harnessing the online resources: a case study of ScienceDirect in India. The International Information & Library Review. https://doi.org/10.1080/10572317.2005.10762693 Gusenbauer M, Haddaway NR (2020) Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res Synth Methods 11(2):181–217. https://doi.org/10.1002/jrsm.1378 Mazilov SI, Mikerov AN, Komleva NE, Zaikina IV (2021) The role of nutrigenetics and nutrigenomics in the prophylaxis of chronic non-communicable diseases. Vopr Pitan 91(1):9–18. https://doi.org/10.33029/0042-8833-2022-91-1-9-18 Rubin M, Ben-Tal N (2021) Using ConSurf to detect functionally important regions in RNA. Curr Protoc 1(10):e270. https://doi.org/10.1002/cpz1.270 Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350. https://doi.org/10.1093/nar/gkw408 Yariv B, Yariv E, Kessel A, Masrati G, Chorin AB, Martz E et al (2023) Using evolutionary data to make sense of macromolecules with a “face-lifted” ConSurf. Protein Sci. https://doi.org/10.1002/pro.4582 Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J et al (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10(1):e1003440. https://doi.org/10.1371/journal.pcbi.1003440 Stone EA, Sidow A (2005) Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Res 15(7):978–986. https://doi.org/10.1101/gr.3804205 Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. https://doi.org/10.1002/0471142905.hg0720s76 Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35(11):3823–3835 Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812 Chen CW, Lin MH, Liao CC, Chang HP, Chu YW (2020) iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J 18:622–630. https://doi.org/10.1016/j.csbj.2020.02.021 Hicks S, Wheeler DA, Plon SE, Kimmel M (2011) Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat 32(6):661–668. https://doi.org/10.1002/humu.21490 Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ et al (1997) Structure of a human lysosomal sulfatase. Structure 5(2):277–289. https://doi.org/10.1016/s0969-2126(97)00185-8 Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367. https://doi.org/10.1093/nar/gky473 Gromiha MM (2007) Prediction of protein stability upon point mutations. Biochem Soc Trans 35(Pt 6):1569–1573. https://doi.org/10.1042/BST0351569 Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34(Web Server issue):W239–W242. https://doi.org/10.1093/nar/gkl190 Litjens T, Hopwood JJ (2001) Mucopolysaccharidosis type VI: structural and clinical implications of mutations in N-acetylgalactosamine-4-sulfatase. Hum Mutat 18(4):282–295. https://doi.org/10.1002/humu.1190 Rosignoli S, Paiardini A (2022) Boosting the full potential of PyMOL with structural biology plugins. Biomolecules. https://doi.org/10.3390/biom12121764 Kaplan W, Littlejohn TG (2001) Swiss-PDB Viewer (Deep View). Brief Bioinform 2(2):195–197. https://doi.org/10.1093/bib/2.2.195 Sriramulu DK, Wu S, Lee S-G (2020) Effect of ligand torsion number on the AutoDock mediated prediction of protein-ligand binding affinity. J Ind Eng Chem 83:359–365. https://doi.org/10.1016/j.jiec.2019.12.009 El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G (2017) AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol Biol 1598:391–403. https://doi.org/10.1007/978-1-4939-6952-4_20 Scarpino A, Petri L, Knez D, Imre T, Ábrányi-Balogh P, Ferenczy GG et al (2021) WIDOCK: a reactive docking protocol for virtual screening of covalent inhibitors. J Comput Aided Mol Des 35(2):223–244. https://doi.org/10.1007/s10822-020-00371-5 Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422. https://doi.org/10.1007/s10822-010-9352-6 Ballante F (2021) Protein-ligand interactions and drug design. In: Mavromoustakos T, Kellici TF (eds) Rational drug design: methods and protocols. Springer, New York Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905–919. https://doi.org/10.1038/nprot.2016.051 Sendler U (2009) Dassault Systèmes [Internet]. Xpert.press, pp 149–61. https://doi.org/10.1007/978-3-540-87898-8_18 Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856. https://doi.org/10.1007/s00249-011-0700-9 Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D. https://doi.org/10.1107/S0907444904011679 Madhana Priya N, Balasundaram A, Sidharth Kumar N, Udhaya Kumar S, Thirumal Kumar D, Magesh R et al (2023) Controlling cell proliferation by targeting cyclin-dependent kinase 6 using drug repurposing approach. Adv Protein Chem Struct Biol 135:97–124. https://doi.org/10.1016/bs.apcsb.2023.01.003 Kumar R, Kumar R, Tanwar P (2021) Structural based screening of potential inhibitors of SMAD4: a step towards personalized medicine for gall bladder and other associated cancers. Mol Divers 25(3):1945–1961. https://doi.org/10.1007/s11030-021-10210-w Mitternacht S (2016) FreeSASA: an open source C library for solvent accessible surface area calculations. F1000Res 5:189. https://doi.org/10.12688/f1000research.7931.1 Hassan M, Shahzadi S, Seo SY, Alashwal H, Zaki N, Moustafa AA (2018) Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat Alzheimer’s disease. Front Comput Neurosci 12:34. https://doi.org/10.3389/fncom.2018.00034 Tanwar H, Kumar DT, Doss CGP, Zayed H (2019) Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA. Metab Brain Dis 34(6):1577–1594. https://doi.org/10.1007/s11011-019-00465-6 Sundarrajan S, Nandakumar MP, Prabhu D, Jeyaraman J, Arumugam M (2020) Conformational insights into the inhibitory mechanism of phyto-compounds against Src kinase family members implicated in psoriasis. J Biomol Struct Dyn 38(5):1398–1414. https://doi.org/10.1080/07391102.2019.1605934 Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–W118. https://doi.org/10.1093/nar/gkl282 GeorgePriyaDoss C, Rajith B (2012) Computational refinement of functional single nucleotide polymorphisms associated with ATM gene. PLoS ONE 7(4):e34573. https://doi.org/10.1371/journal.pone.0034573 Thirumal Kumar D, Jerushah Emerald L, George Priya Doss C, Sneha P, Siva R, Charles Emmanuel Jebaraj W et al (2018) Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2. Metab Brain Dis 33(5):1699–1710. https://doi.org/10.1007/s11011-018-0278-3 Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics 14(Suppl 2):S5. https://doi.org/10.1186/1471-2105-14-S2-S5 Rajasekaran R, George Priya Doss C, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R (2008) Effect of deleterious nsSNP on the HER2 receptor based on stability and binding affinity with herceptin: a computational approach. C R Biol 331(6):409–417. https://doi.org/10.1016/j.crvi.2008.03.004 Kadali S, Bodiga VL, Naushad SM. Application of pathogenicity scores as diagnostic and prognostic markers for MPS disorders: In-silico analysis in MPS I. https://doi.org/10.21203/rs.3.rs-1676387/v2 Karageorgos L, Brooks DA, Pollard A, Melville EL, Hein LK, Clements PR et al (2007) Mutational analysis of 105 mucopolysaccharidosis type VI patients. Hum Mutat 28(9):897–903. https://doi.org/10.1002/humu.20534 Petry MFG, Nonemacher K, Sebben JC, Schwartz IVD, Azevedo ACM, Burin MG et al (2005) Mucopolysaccharidosis type VI: identification of novel mutations on the arylsulphatase B gene in South American patients. J Inherit Metab Dis 28(6):1027–1034. https://doi.org/10.1007/s10545-005-0020-2 Rizvi SMD, Shakil S, Haneef M (2013) A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J 12:831–857 Entchev E, Jantzen I, Masson P, Bocart S, Bournique B, Luccarini JM et al (2020) Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI-Evidence from in vitro and in vivo models. PLoS ONE 15(5):e0233032. https://doi.org/10.1371/journal.pone.0233032 Karthick V, Nagasundaram N, Doss CGP, Chakraborty C, Siva R, Lu A et al (2016) Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect Dis Poverty 5:12. https://doi.org/10.1186/s40249-016-0105-1 Dey P, Biswas P (2023) Exploring the aggregation of amyloid-β 42 through Monte Carlo simulations. Biophys Chem 297:107011. https://doi.org/10.1016/j.bpc.2023.107011