Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone
Tài liệu tham khảo
Abdullah, 1986, Solvatochromic effects in the fluorescence and triplet—triplet absorption spectra of xanthone, thioxanthone and N-methylacridone, J. Photochem., 32, 49, 10.1016/0047-2670(86)85006-7
Allonas, 2000, Investigation of the triplet quantum yield of thioxanthone by time-resolved thermal lens spectroscopy: solvent and population lens effects, Chem. Phys. Lett., 322, 483, 10.1016/S0009-2614(00)00462-0
Amirzadeh, 1981, On the photoinitiation of free radical polymerization-laser flash photolysis investigations on thioxanthone derivatives, Macromol.Chem. Phys., 182, 2821, 10.1002/macp.1981.021821027
Andrzejewska, 2006, Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone, Macromolecules, 39, 3777, 10.1021/ma060240k
Angulo, 2010, Ultrafast decay of the excited singlet states of thioxanthone by internal conversion and intersystem crossing, ChemPhysChem, 11, 480, 10.1002/cphc.200900654
Baldacchini, 2004, Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization, J. Appl. Phys., 95, 6072, 10.1063/1.1728296
Baldo, 2000, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation, Phys. Rev. B, 62, 10967, 10.1103/PhysRevB.62.10967
Bharmoria, 2020, Triplet–triplet annihilation based near infrared to visible molecular photon upconversion, Chem. Soc. Rev., 49, 6529, 10.1039/D0CS00257G
Bretschneider, 2007, Breaking the diffraction barrier in fluorescence microscopy by optical shelving, Phys. Rev. Lett., 98, 218103, 10.1103/PhysRevLett.98.218103
Buck, 2019, Spin-allowed transitions control the formation of triplet excited states in orthogonal donor-acceptor dyads, Chem, 5, 138, 10.1016/j.chempr.2018.10.001
Callomon, 1972, Non-radiative relaxation of the excited à 1B2u state of benzene, Chem. Phys. Lett., 13, 125, 10.1016/0009-2614(72)80059-9
Carmichael, 1986, Triplet–triplet absorption spectra of organic molecules in condensed phases, J. Phys. Chem. Ref. Data, 15, 1, 10.1063/1.555770
Chang, 2013, Highly efficient warm white organic light-emitting diodes by triplet exciton conversion, Adv. Funct. Mater., 23, 705, 10.1002/adfm.201201858
Chi, 2019, Tailored thioxanthone-based photoinitiators for two-photon-controllable polymerization and nanolithographic printing, J. Polym. Sci. B Polym. Phys., 57, 1462, 10.1002/polb.24891
Chi, 2021, Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution, ACS Appl. Polym., 3, 1426, 10.1021/acsapm.0c01291
Cohen, 2019, Extracting information on linear and nonlinear absorption from two-beam action spectroscopy data, J. Phys. Chem. A, 123, 7314, 10.1021/acs.jpca.9b06068
Donnert, 2007, Major signal increase in fluorescence microscopy through dark-state relaxation, Nat. Methods, 4, 81, 10.1038/nmeth986
Evans, 1960, The effect of environment on singlet-triplet transitions of organic molecules, Proc. R. Soc. Math. Phys. Eng. Sci., 255, 55
Farrer, 2005, Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles, Nano Lett., 5, 1139, 10.1021/nl050687r
Farsari, 2009, Two-photon fabrication, Nat. Photonics, 3, 450, 10.1038/nphoton.2009.131
Fischer, 2013, Three-dimensional multi-photon direct laser writing with variable repetition rate, Opt. Express, 21, 26244, 10.1364/OE.21.026244
Fischer, 2015, Exploring the mechanisms in STED-enhanced direct laser writing, Adv. Opt. Mater., 3, 221, 10.1002/adom.201400413
Fischer, 2010, The materials challenge in diffraction-unlimited direct-laser-writing optical lithography, Adv. Mater., 22, 3578, 10.1002/adma.201000892
Fischer, 2011, Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [invited], Opt. Mater. Express, 1, 614, 10.1364/OME.1.000614
Fischer, 2013, Three-dimensional optical laser lithography beyond the diffraction limit, Laser Photonics Rev., 7, 22, 10.1002/lpor.201100046
Fourkas, 2016, Fundamentals of two-photon fabrication, 45
Fourkas, 2016, STED-inspired approaches to resolution enhancement, 111
Fourkas, 2014, 2-Colour photolithography, Phys. Chem. Chem. Phys., 16, 8731, 10.1039/c3cp52957f
Frisch, 2009
Gan, 2013, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size, Nat.Commun., 4, 2061, 10.1038/ncomms3061
Ge, 2015, Bringing light into the dark triplet space of molecular systems, Phys. Chem. Chem. Phys., 17, 13129, 10.1039/C5CP00323G
Harke, 2012, Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography, ChemPhysChem, 13, 1429, 10.1002/cphc.201200006
Harke, 2013, Polymerization inhibition by triplet state absorption for nanoscale lithography, Adv.Mater., 25, 904, 10.1002/adma.201204141
Hell, 2007, Far-field optical nanoscopy, Science, 316, 1153, 10.1126/science.1137395
Izakura, 2018, Photon upconversion through a cascade process of two-photon absorption in CsPbBr3 and triplet–triplet annihilation in porphyrin/diphenylanthracene, J. Phys. Chem. C, 122, 14425, 10.1021/acs.jpcc.8b05508
Jacopo, 2017, Recent advances in the application triplet–triplet annihilation-based photon upconversion systems to solar technologies, J. Photonics, 8, 1
Kajii, 1991, Transient absorption, lifetime and relaxation of C60 in the triplet state, Chem. Phys. Lett., 181, 100, 10.1016/0009-2614(91)90339-B
Kasha, 1950, Characterization of electronic transitions in complex molecules, Discuss. Faraday Soc., 9, 14, 10.1039/df9500900014
Klar, 1999, Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett., 24, 954, 10.1364/OL.24.000954
Klar, 2000, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. U S A, 97, 8206, 10.1073/pnas.97.15.8206
Knee, 1985, Lifetimes of dissociation-relaxed triplet states of pyrazine and pyrimidine, J. Phys. Chem., 89, 948, 10.1021/j100252a012
Krishnan, 1980, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 72, 650, 10.1063/1.438955
Kuebler, 1999, 107
LaFratta, 2007, Multiphoton fabrication, Angew. Chem. Int. Ed., 46, 6238, 10.1002/anie.200603995
Li, 2009, Achieving λ/20 resolution by one-color initiation and deactivation of polymerization, Science, 324, 910, 10.1126/science.1168996
Liaros, 2018, Determination of the contributions of two simultaneous absorption orders using 2-beam action spectroscopy, Opt. Express, 26, 9492, 10.1364/OE.26.009492
Liaros, 2018, Probing multiphoton photophysics using two-beam action spectroscopy, J. Phys. Chem. A, 122, 6643, 10.1021/acs.jpca.8b04463
Liaros, 2017, The characterization of absorptive nonlinearities, Laser Photonics Rev., 11, 1700106, 10.1002/lpor.201700106
Liaros, 2019, Ten years of two-color photolithography [Invited], Opt. Mater. Express, 9, 3006, 10.1364/OME.9.003006
Liaros, 2021, Methods for determining the effective order of absorption in radical multiphoton photoresists: a critical analysis, Laser Photonics Rev., 15, 2000203, 10.1002/lpor.202000203
Lower, 1966, The triplet state and molecular electronic processes in organic molecules, Chem.Rev., 66, 199, 10.1021/cr60240a004
Marenich, 2009, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113, 6378, 10.1021/jp810292n
Marian, 2012, Spin-orbit coupling and intersystem crossing in molecules, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, 187, 10.1002/wcms.83
Mueller, 2014, Polymerization kinetics in three-dimensional direct laser writing, Adv. Mater., 26, 6566, 10.1002/adma.201402366
Mundt, 2016, Thioxanthone in apolar solvents: ultrafast internal conversion precedes fast intersystem crossing, Phys. Chem. Chem. Phys., 18, 6637, 10.1039/C5CP06849E
Otis, 1983, Nonradiative processes in the channel three region of the S1 state of ultracold benzene, J. Phys. Chem., 87, 2232, 10.1021/j100235a037
Patterson, 1970, Oxygen quenching of singlet and triplet states, Chem. Phys. Lett., 7, 612, 10.1016/0009-2614(70)87019-1
Rai-Constapel, 2011, Isolated and solvated thioxanthone: a photophysical study, J. Phys. Chem. A, 115, 8589, 10.1021/jp2022456
Rai-Constapel, 2014, Chimeric behavior of excited thioxanthone in protic solvents: II, Theor. J. Phys. Chem. A, 118, 11708, 10.1021/jp5099415
Rauch, 2018, Applications and prospects for triplet-triplet annihilation photon upconversion, Chimia, 72, 501, 10.2533/chimia.2018.501
Romanovskii, 2000, Phosphorescence of pi-conjugated oligomers and polymers, Phys. Rev. Lett., 84, 1027, 10.1103/PhysRevLett.84.1027
Smith, 2010, Singlet fission, Chem.Rev., 110, 6891, 10.1021/cr1002613
Steiner, 1978, Position dependent heavy atom effect in physical triplet quenching by electron donors, Chem. Phys. Lett., 55, 364, 10.1016/0009-2614(78)87040-7
Stranius, 2018, Selective manipulation of electronically excited states through strong light-matter interactions, Nat.Commun., 9, 2273, 10.1038/s41467-018-04736-1
Stromqvist, 2010, Quenching of triplet state fluorophores for studying diffusion-mediated reactions in lipid membranes, Biophys.J., 99, 3821, 10.1016/j.bpj.2010.09.059
Sugioka, 2014, Femtosecond laser three-dimensional micro- and nanofabrication, Appl. Phys. Rev., 1, 041303, 10.1063/1.4904320
Szabó, 1982
Tomova, 2016, In situ measurement of the effective nonlinear absorption order in multiphoton photoresists, Laser Photonics Rev., 10, 849, 10.1002/lpor.201600079
Villnow, 2014, Chimeric behavior of excited thioxanthone in protic solvents: I. Experiments, J. Phys. Chem. A, 118, 11696, 10.1021/jp5099393
Wolf, 2011, Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography, Opt. Lett., 36, 3188, 10.1364/OL.36.003188
Yang, 2017, Recent advances in organic thermally activated delayed fluorescence materials, Chem. Soc. Rev., 46, 915, 10.1039/C6CS00368K
Yang, 2019, On the Schwarzschild effect in 3D two-photon laser lithography, Adv. Opt. Mater., 7, 1901040, 10.1002/adom.201901040
Zhao, 2004, Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett., 93, 157402, 10.1103/PhysRevLett.93.157402
Zhao, 2011, Applications and validations of the Minnesota density functionals, Chem. Phys. Lett., 502, 1, 10.1016/j.cplett.2010.11.060
Zhao, 2013, Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev., 42, 5323, 10.1039/c3cs35531d