Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone

iScience - Tập 25 - Trang 103600 - 2022
Nikolaos Liaros1, Sandra A. Gutierrez Razo1, Matthew D. Thum1, Hannah M. Ogden1, Andrea N. Zeppuhar1, Steven Wolf1, Tommaso Baldacchini2, Matthew J. Kelley2, John S. Petersen1,3, Daniel E. Falvey1, Amy S. Mullin1, John T. Fourkas1,4,5,6
1Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
2Newport Corporation, 1791 Deere Avenue, Irvine, CA 92606, USA
3IMEC, Kapeldreef 75, 3001 Leuven, Belgium
4Institute for Physical Science & Technology, University of Maryland, College Park, MD 20742, USA
5Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
6Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA

Tài liệu tham khảo

Abdullah, 1986, Solvatochromic effects in the fluorescence and triplet—triplet absorption spectra of xanthone, thioxanthone and N-methylacridone, J. Photochem., 32, 49, 10.1016/0047-2670(86)85006-7 Allonas, 2000, Investigation of the triplet quantum yield of thioxanthone by time-resolved thermal lens spectroscopy: solvent and population lens effects, Chem. Phys. Lett., 322, 483, 10.1016/S0009-2614(00)00462-0 Amirzadeh, 1981, On the photoinitiation of free radical polymerization-laser flash photolysis investigations on thioxanthone derivatives, Macromol.Chem. Phys., 182, 2821, 10.1002/macp.1981.021821027 Andrzejewska, 2006, Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone, Macromolecules, 39, 3777, 10.1021/ma060240k Angulo, 2010, Ultrafast decay of the excited singlet states of thioxanthone by internal conversion and intersystem crossing, ChemPhysChem, 11, 480, 10.1002/cphc.200900654 Baldacchini, 2004, Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization, J. Appl. Phys., 95, 6072, 10.1063/1.1728296 Baldo, 2000, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation, Phys. Rev. B, 62, 10967, 10.1103/PhysRevB.62.10967 Bharmoria, 2020, Triplet–triplet annihilation based near infrared to visible molecular photon upconversion, Chem. Soc. Rev., 49, 6529, 10.1039/D0CS00257G Bretschneider, 2007, Breaking the diffraction barrier in fluorescence microscopy by optical shelving, Phys. Rev. Lett., 98, 218103, 10.1103/PhysRevLett.98.218103 Buck, 2019, Spin-allowed transitions control the formation of triplet excited states in orthogonal donor-acceptor dyads, Chem, 5, 138, 10.1016/j.chempr.2018.10.001 Callomon, 1972, Non-radiative relaxation of the excited à 1B2u state of benzene, Chem. Phys. Lett., 13, 125, 10.1016/0009-2614(72)80059-9 Carmichael, 1986, Triplet–triplet absorption spectra of organic molecules in condensed phases, J. Phys. Chem. Ref. Data, 15, 1, 10.1063/1.555770 Chang, 2013, Highly efficient warm white organic light-emitting diodes by triplet exciton conversion, Adv. Funct. Mater., 23, 705, 10.1002/adfm.201201858 Chi, 2019, Tailored thioxanthone-based photoinitiators for two-photon-controllable polymerization and nanolithographic printing, J. Polym. Sci. B Polym. Phys., 57, 1462, 10.1002/polb.24891 Chi, 2021, Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution, ACS Appl. Polym., 3, 1426, 10.1021/acsapm.0c01291 Cohen, 2019, Extracting information on linear and nonlinear absorption from two-beam action spectroscopy data, J. Phys. Chem. A, 123, 7314, 10.1021/acs.jpca.9b06068 Donnert, 2007, Major signal increase in fluorescence microscopy through dark-state relaxation, Nat. Methods, 4, 81, 10.1038/nmeth986 Evans, 1960, The effect of environment on singlet-triplet transitions of organic molecules, Proc. R. Soc. Math. Phys. Eng. Sci., 255, 55 Farrer, 2005, Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles, Nano Lett., 5, 1139, 10.1021/nl050687r Farsari, 2009, Two-photon fabrication, Nat. Photonics, 3, 450, 10.1038/nphoton.2009.131 Fischer, 2013, Three-dimensional multi-photon direct laser writing with variable repetition rate, Opt. Express, 21, 26244, 10.1364/OE.21.026244 Fischer, 2015, Exploring the mechanisms in STED-enhanced direct laser writing, Adv. Opt. Mater., 3, 221, 10.1002/adom.201400413 Fischer, 2010, The materials challenge in diffraction-unlimited direct-laser-writing optical lithography, Adv. Mater., 22, 3578, 10.1002/adma.201000892 Fischer, 2011, Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [invited], Opt. Mater. Express, 1, 614, 10.1364/OME.1.000614 Fischer, 2013, Three-dimensional optical laser lithography beyond the diffraction limit, Laser Photonics Rev., 7, 22, 10.1002/lpor.201100046 Fourkas, 2016, Fundamentals of two-photon fabrication, 45 Fourkas, 2016, STED-inspired approaches to resolution enhancement, 111 Fourkas, 2014, 2-Colour photolithography, Phys. Chem. Chem. Phys., 16, 8731, 10.1039/c3cp52957f Frisch, 2009 Gan, 2013, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size, Nat.Commun., 4, 2061, 10.1038/ncomms3061 Ge, 2015, Bringing light into the dark triplet space of molecular systems, Phys. Chem. Chem. Phys., 17, 13129, 10.1039/C5CP00323G Harke, 2012, Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography, ChemPhysChem, 13, 1429, 10.1002/cphc.201200006 Harke, 2013, Polymerization inhibition by triplet state absorption for nanoscale lithography, Adv.Mater., 25, 904, 10.1002/adma.201204141 Hell, 2007, Far-field optical nanoscopy, Science, 316, 1153, 10.1126/science.1137395 Izakura, 2018, Photon upconversion through a cascade process of two-photon absorption in CsPbBr3 and triplet–triplet annihilation in porphyrin/diphenylanthracene, J. Phys. Chem. C, 122, 14425, 10.1021/acs.jpcc.8b05508 Jacopo, 2017, Recent advances in the application triplet–triplet annihilation-based photon upconversion systems to solar technologies, J. Photonics, 8, 1 Kajii, 1991, Transient absorption, lifetime and relaxation of C60 in the triplet state, Chem. Phys. Lett., 181, 100, 10.1016/0009-2614(91)90339-B Kasha, 1950, Characterization of electronic transitions in complex molecules, Discuss. Faraday Soc., 9, 14, 10.1039/df9500900014 Klar, 1999, Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett., 24, 954, 10.1364/OL.24.000954 Klar, 2000, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. U S A, 97, 8206, 10.1073/pnas.97.15.8206 Knee, 1985, Lifetimes of dissociation-relaxed triplet states of pyrazine and pyrimidine, J. Phys. Chem., 89, 948, 10.1021/j100252a012 Krishnan, 1980, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 72, 650, 10.1063/1.438955 Kuebler, 1999, 107 LaFratta, 2007, Multiphoton fabrication, Angew. Chem. Int. Ed., 46, 6238, 10.1002/anie.200603995 Li, 2009, Achieving λ/20 resolution by one-color initiation and deactivation of polymerization, Science, 324, 910, 10.1126/science.1168996 Liaros, 2018, Determination of the contributions of two simultaneous absorption orders using 2-beam action spectroscopy, Opt. Express, 26, 9492, 10.1364/OE.26.009492 Liaros, 2018, Probing multiphoton photophysics using two-beam action spectroscopy, J. Phys. Chem. A, 122, 6643, 10.1021/acs.jpca.8b04463 Liaros, 2017, The characterization of absorptive nonlinearities, Laser Photonics Rev., 11, 1700106, 10.1002/lpor.201700106 Liaros, 2019, Ten years of two-color photolithography [Invited], Opt. Mater. Express, 9, 3006, 10.1364/OME.9.003006 Liaros, 2021, Methods for determining the effective order of absorption in radical multiphoton photoresists: a critical analysis, Laser Photonics Rev., 15, 2000203, 10.1002/lpor.202000203 Lower, 1966, The triplet state and molecular electronic processes in organic molecules, Chem.Rev., 66, 199, 10.1021/cr60240a004 Marenich, 2009, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113, 6378, 10.1021/jp810292n Marian, 2012, Spin-orbit coupling and intersystem crossing in molecules, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, 187, 10.1002/wcms.83 Mueller, 2014, Polymerization kinetics in three-dimensional direct laser writing, Adv. Mater., 26, 6566, 10.1002/adma.201402366 Mundt, 2016, Thioxanthone in apolar solvents: ultrafast internal conversion precedes fast intersystem crossing, Phys. Chem. Chem. Phys., 18, 6637, 10.1039/C5CP06849E Otis, 1983, Nonradiative processes in the channel three region of the S1 state of ultracold benzene, J. Phys. Chem., 87, 2232, 10.1021/j100235a037 Patterson, 1970, Oxygen quenching of singlet and triplet states, Chem. Phys. Lett., 7, 612, 10.1016/0009-2614(70)87019-1 Rai-Constapel, 2011, Isolated and solvated thioxanthone: a photophysical study, J. Phys. Chem. A, 115, 8589, 10.1021/jp2022456 Rai-Constapel, 2014, Chimeric behavior of excited thioxanthone in protic solvents: II, Theor. J. Phys. Chem. A, 118, 11708, 10.1021/jp5099415 Rauch, 2018, Applications and prospects for triplet-triplet annihilation photon upconversion, Chimia, 72, 501, 10.2533/chimia.2018.501 Romanovskii, 2000, Phosphorescence of pi-conjugated oligomers and polymers, Phys. Rev. Lett., 84, 1027, 10.1103/PhysRevLett.84.1027 Smith, 2010, Singlet fission, Chem.Rev., 110, 6891, 10.1021/cr1002613 Steiner, 1978, Position dependent heavy atom effect in physical triplet quenching by electron donors, Chem. Phys. Lett., 55, 364, 10.1016/0009-2614(78)87040-7 Stranius, 2018, Selective manipulation of electronically excited states through strong light-matter interactions, Nat.Commun., 9, 2273, 10.1038/s41467-018-04736-1 Stromqvist, 2010, Quenching of triplet state fluorophores for studying diffusion-mediated reactions in lipid membranes, Biophys.J., 99, 3821, 10.1016/j.bpj.2010.09.059 Sugioka, 2014, Femtosecond laser three-dimensional micro- and nanofabrication, Appl. Phys. Rev., 1, 041303, 10.1063/1.4904320 Szabó, 1982 Tomova, 2016, In situ measurement of the effective nonlinear absorption order in multiphoton photoresists, Laser Photonics Rev., 10, 849, 10.1002/lpor.201600079 Villnow, 2014, Chimeric behavior of excited thioxanthone in protic solvents: I. Experiments, J. Phys. Chem. A, 118, 11696, 10.1021/jp5099393 Wolf, 2011, Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography, Opt. Lett., 36, 3188, 10.1364/OL.36.003188 Yang, 2017, Recent advances in organic thermally activated delayed fluorescence materials, Chem. Soc. Rev., 46, 915, 10.1039/C6CS00368K Yang, 2019, On the Schwarzschild effect in 3D two-photon laser lithography, Adv. Opt. Mater., 7, 1901040, 10.1002/adom.201901040 Zhao, 2004, Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett., 93, 157402, 10.1103/PhysRevLett.93.157402 Zhao, 2011, Applications and validations of the Minnesota density functionals, Chem. Phys. Lett., 502, 1, 10.1016/j.cplett.2010.11.060 Zhao, 2013, Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev., 42, 5323, 10.1039/c3cs35531d