Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418
Gonzalez F (2016) Advanced and post lithium-ion batteries 2016-2026: technologies, markets, Forecasts 2016, Retrieved from http://www.idtechex.com/
Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10
Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Angell M, Chen C, Yang J, Hwang B-J, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328
Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium applications to energy storage. J Electrochem Soc 137(3):775–780
Aurbach D, Skaletsky R, Gofer Y (1991) The electrochemical behavior of calcium electrodes in a few organic electrolytes. J Electrochem Soc 138(12):3536–3545
McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138(2):645–656
Mayer A (1990) Electrodeposition of aluminum, aluminum/magnesium alloys, and magnesium from organometallic electrolytes
Aurbach D, Gofer Y, Lu Z, Schechter A, Chusid O, Gizbar H, Cohen Y, Ashkenazi V, Moshkovich M, Turgeman R, Levi E (2001) A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J Power Sources 97–98:28–32
Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 51(4):933–935
Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. 1:16119
Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK (2016) Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces 8(5):3021–3031
Aurbach D, Cohen Y, Moshkovich M (2001) The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem Solid State Lett 4(8):A113–A116
Yglesias M (2012) Electric car batteries are very expensive 2012, Retrieved from http://www.slate.com/blogs/moneybox/
Liu M, Jain A, Rong Z, Qu X, Canepa P, Malik R, Ceder G, Persson KA (2016) Evaluation of sulfur spinel compounds for multivalent battery cathode applications. Energy Environ Sci 9(10):3201–3209
Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, Persson K, Ceder G (2015) Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater 27(17):6016–6021
Guerfi A, Trottier J, Boyano I, De Meatza I, Blazquez JA, Brewer S, Ryder KS, Vijh A, Zaghib K (2014) High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J Power Sources 248:1099–1104
Han S-D, Kim S, Li D, Petkov V, Yoo HD, Phillips PJ, Wang H, Kim JJ, More KL, Key B, Klie RF, Cabana J, Stamenkovic VR, Fister TT, Markovic NM, Burrell AK, Tepavcevic S, Vaughey JT (2017) Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem Mater 29(11):4874–4884
Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727
Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073
Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427
Doe RE, Han R, Hwang J, Gmitter AJ, Shterenberg I, Yoo HD, Pour N, Aurbach D (2014) Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem Commun 50(2):243–245
Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720
Ponrouch A, Frontera C, Bardé F, Palacín MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169–172
Bruce PG, Hardgrave MT, Vincent CA (1989) Steady state current flow in solid binary electrolyte cells. J Electroanal Chem Interfacial Electrochem 271(1):27–34
Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263):938–943
Nancollas GH (1966) Interactions in electrolyte solutions. Elsevier, Amsterdam
Seo DM, Borodin O, Han S-D, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J Electrochem Soc 159(9):A1489–A1500
Rajput NN, Qu X, Sa N, Burrell AK, Persson KA (2015) The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J Am Chem Soc 137:3411–3420
Heilman-Miller SL, Thirumalai D, Woodson SA (2001) Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. J Mol Biol 306(5):1157–1166
Giffin GA, Moretti A, Jeong S, Passerini S (2014) Complex nature of ionic coordination in magnesium ionic liquid-based electrolytes: solvates with mobile Mg2 + cations. J Phys Chem C 118(19):9966–9973
Doucey L, Revault M, Lautié A, Chaussé A, Messina R (1999) A study of the Li/Li + couple in DMC and PC solvents: part 1: characterization of LiAsF6/DMC and LiAsF6/PC solutions. Electrochim Acta 44(14):2371–2377
Baskin A, Prendergast D (2016) Exploration of the detailed conditions for reductive stability of Mg (TFSI) 2 in diglyme: implications for multivalent electrolytes. J Phys Chem C 120(7):3583–3594
Wright MR (2007) An introduction to aqueous electrolyte solutions. Wiley, Hoboken
Smithson J, Williams R (1958) A possible differentiation between ion-pairs and complexes. J Chem Soc (Resumed) 81:457–462
Lu Z, Schechter A, Moshkovich M, Aurbach D (1999) On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 466(2):203–217
Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86
Tran TT, Lamanna W, Obrovac M (2012) Evaluation of Mg [N (SO2CF3) 2] 2/acetonitrile electrolyte for use in Mg-ion cells. J Electrochem Soc 159(12):A2005–A2009
Elgquist B, Wedborg M (1975) Stability of ion pairs from gypsum solubility degree of ion pair formation between the major constituents of seawater. Mar Chem 3(3):215–225
Okoshi M, Yamada Y, Yamada A, Nakai H (2013) Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc 160(11):A2160–A2165
Brown I (1988) What factors determine cation coordination numbers? Acta Crystallogr Sect B: Struct Sci 44(6):545–553
Lapidus SH, Rajput NN, Qu X, Chapman KW, Persson KA, Chupas PJ (2014) Solvation structure and energetics of electrolytes for multivalent energy storage. Phys Chem Chem Phys 16(40):21941–21945
Jeremias S, Giffin GA, Moretti A, Jeong S, Passerini S (2014) Mechanisms of magnesium ion transport in pyrrolidinium bis (trifluoromethanesulfonyl) imide-based ionic liquid electrolytes. J Phys Chem C 118(49):28361–28368
Sa N, Rajput NN, Wang H, Key B, Ferrandon M, Srinivasan V, Persson KA, Burrell AK, Vaughey JT (2016) Concentration-dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis (trifluoromethane sulfonyl) imide in diglyme. RSC Adv 6(114):113663–113670
Watkins T, Buttry DA (2015) Determination of Mg2 + speciation in a TFSI–based ionic liquid with and without chelating ethers using Raman spectroscopy. J Phys Chem B 119(23):7003–7014
Kimura T, Fujii K, Sato Y, Morita M, Yoshimoto N (2015) Solvation of magnesium ion in triglyme-based electrolyte solutions. J Phys Chem C 119(33):18911–18917
Brouillette D, Irish DE, Taylor NJ, Perron G, Odziemkowski M, Desnoyers JE (2002) Stable solvates in solution of lithium bis (trifluoromethylsulfone) imide in glymes and other aprotic solvents: phase diagrams, crystallography and Raman spectroscopy. Phys Chem Chem Phys 4(24):6063–6071
Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis (trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115(37):18384–18394
Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116(36):11323–11331
Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, Gu M, Deng X, Xu S, Han KS (2014) Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 12:750–759
Seo DM, Boyle PD, Sommer RD, Daubert JS, Borodin O, Henderson WA (2014) Solvate structures and spectroscopic characterization of LiTFSI electrolytes. J Phys Chem B 118(47):13601–13608
Mohtadi R, Mizuno F (2014) Magnesium batteries: current state of the art, issues and future perspectives. Beilstein Journal of Nanotechnology 5(1):1291–1311
Salama M, Shterenberg I, Gizbar H, Nitoker Eliaz N, Kosa M, Keinan-Adamsky K, Afri M, Shimon LJ, Gottlieb HE, Major DT (2016) Unique behavior of dimethoxyethane (DME)/Mg (N (SO2CF3) 2) 2 solutions. J Phys Chem C 120:19586–19594
Hefter G (2006) When spectroscopy fails: the measurement of ion pairing. Pure Appl Chem 78(8):1571–1586
Sa N, Pan B, Saha-Shah A, Hubaud AA, Vaughey JT, Baker LA, Liao C, Burrell AK (2016) Role of chloride for a simple, non-Grignard Mg electrolyte in ether-based solvents. ACS Appl Mater Interfaces 8(25):16002–16008
Shao Y, Liu T, Li G, Gu M, Nie Z, Engelhard M, Xiao J, Lv D, Wang C, Zhang JG, Liu J (2013) Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep 3:3130
Mohtadi R, Matsui M, Arthur TS, Hwang S-J (2012) Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed 51(39):9780–9783
Chang J, Haasch RT, Kim J, Spila T, Braun PV, Gewirth AA, Nuzzo RG (2015) Synergetic role of Li + during Mg electrodeposition/dissolution in borohydride diglyme electrolyte solution: voltammetric stripping behaviors on a Pt microelectrode indicative of Mg–Li alloying and facilitated dissolution. ACS Appl Mater Interfaces 7(4):2494–2502
Hu JZ, Rajput NN, Wan C, Shao Y, Deng X, Jaegers NR, Hu M, Chen Y, Shin Y, Monk J, Chen Z, Qin Z, Mueller KT, Liu J, Persson KA (2018) 25 Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes. Nano Energy
Tutusaus O, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV (2015) An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed 54(27):7900–7904
McArthur SG, Jay R, Geng L, Guo J, Lavallo V (2017) Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries. Chem Commun 53(32):4453–4456
Douvris C, Michl J (2013) Update 1 of: chemistry of the carba-closo-dodecaborate(−) anion, CB11H12–. Chem Rev 113(10):PR179–PR233
Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73
Aurbach D, Gizbar H, Schechter A, Chusid O, Gottlieb HE, Gofer Y, Goldberg I (2002) Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc 149(2):A115–A121
Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950
Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279
Nakayama Y, Kudo Y, Oki H, Yamamoto K, Kitajima Y, Noda K (2008) Complex structures and electrochemical properties of magnesium electrolytes. J Electrochem Soc 155(10):A754–A759
Gizbar H, Vestfrid Y, Chusid O, Gofer Y, Gottlieb HE, Marks V, Aurbach D (2004) Alkyl group transmetalation reactions in electrolytic solutions studied by multinuclear NMR. Organometallics 23(16):3826–3831
Vestfried Y, Chusid O, Goffer Y, Aped P, Aurbach D (2007) Structural analysis of electrolyte solutions comprising magnesium−aluminate chloro−organic complexes by Raman spectroscopy. Organometallics 26(13):3130–3137
Liu T, Cox JT, Hu D, Deng X, Hu J, Hu MY, Xiao J, Shao Y, Tang K, Liu J (2015) A fundamental study on the [(μ-Cl) 3 Mg 2 (THF) 6] + dimer electrolytes for rechargeable Mg batteries. Chem Commun 51(12):2312–2315
Pour N, Gofer Y, Major DT, Aurbach D (2011) Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc 133(16):6270–6278
Liu T, Shao Y, Li G, Gu M, Hu J, Xu S, Nie Z, Chen X, Wang C, Liu J (2014) A facile approach using MgCl2 to formulate high performance Mg2 + electrolytes for rechargeable Mg batteries. J Mater Chem A 2(10):3430–3438
Wan LF, Prendergast D (2014) The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra. J Am Chem Soc 136(41):14456–14464
Cheng Y, Stolley RM, Han KS, Shao Y, Arey BW, Washton NM, Mueller KT, Helm ML, Sprenkle VL, Liu J (2015) Highly active electrolytes for rechargeable Mg batteries based on a [Mg 2 (μ-Cl) 2] 2 + cation complex in dimethoxyethane. Phys Chem Chem Phys 17(20):13307–13314
Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D (2014) The challenge of developing rechargeable magnesium batteries. MRS Bull 39(05):453–460
Mizrahi O, Amir N, Pollak E, Chusid O, Marks V, Gottlieb H, Larush L, Zinigrad E, Aurbach D (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109
Cheng Y, Shao Y, Zhang J-G, Sprenkle VL, Liu J, Li G (2014) High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun 50(68):9644–9646
Gao T, Han F, Zhu Y, Suo L, Luo C, Xu K, Wang C (2015) Hybrid Mg2 +/Li + battery with long cycle life and high rate capability. Adv Energy Mater 5 (5)
Pan B, Huang J, Sa N, Brombosz SM, Vaughey JT, Zhang L, Burrell AK, Zhang Z, Liao C (2016) MgCl2: the key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries. J Electrochem Soc 163(8):A1672–A1677
Muldoon J, Bucur CB, Oliver AG, Zajicek J, Allred GD, Boggess WC (2013) Corrosion of magnesium electrolytes: chlorides—the culprit. Energy Environ Sci 6(2):482–487
Nelson EG, Kampf JW, Bartlett BM (2014) Enhanced oxidative stability of non-Grignard magnesium electrolytes through ligand modification. Chem Commun 50(40):5193–5195
Wang F-F, Guo Y-S, Yang J, Nuli Y, Hirano S-I (2012) A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem Commun 48(87):10763–10765
Zhao-Karger Z, Zhao X, Fuhr O, Fichtner M (2013) Bisamide-based non-nucleophilic electrolytes for rechargeable magnesium batteries. Rsc Adv 3(37):16330–16335
Pan B, Lau K-C, Vaughey JT, Zhang L, Zhang Z, Liao C (2017) Ionic liquid as an effective additive for rechargeable magnesium batteries. J Electrochem Soc 164(4):A902–A906
Guo Y-S, Zhang F, Yang J, Wang F-F, NuLi Y, Hirano S-I (2012) Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci 5(10):9100–9106
Barile CJ, Barile EC, Zavadil KR, Nuzzo RG, Gewirth AA (2014) Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition. J Phys Chem C 118(48):27623–27630
Canepa P, Jayaraman S, Cheng L, Rajput NN, Richards WD, Gautam GS, Curtiss LA, Persson KA, Ceder G (2015) Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy Environ Sci 8(12):3718–3730
Barile CJ, Spatney R, Zavadil KR, Gewirth AA (2014) Investigating the reversibility of in situ generated magnesium organohaloaluminates for magnesium deposition and dissolution. J Phys Chem C 118(20):10694–10699
Son S-B, Gao T, Harvey SP, Steirer KX, Stokes A, Norman A, Wang C, Cresce A, Xu K, Ban C (2018) An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem 10(5):532-539
Dudev T, Cowan J, Lim C (1999) Competitive binding in magnesium coordination chemistry: water versus ligands of biological interest. J Am Chem Soc 121(33):7665–7673
Pye CC, Rudolph W (1998) An ab initio and Raman investigation of magnesium (II) hydration. J Phys Chem A 102(48):9933–9943
Wahab A, Mahiuddin S, Hefter G, Kunz W, Minofar B, Jungwirth P (2005) Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman spectra, and molecular dynamics simulations of aqueous solutions of Mg (OAc) 2 and Mg (NO3) 2: Hofmeister effects and ion pair formation. J Phys Chem B 109(50):24108–24120
Yagi S, Fukuda M, Ichitsubo T, Nitta K, Mizumaki M, Matsubara E (2015) EQCM analysis of redox behavior of CuFe Prussian blue analog in mg battery electrolytes. J Electrochem Soc 162(12):A2356–A2361
Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 6(18):3578–3591
Novak P, Desilvestro J (1993) Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc 140(1):140–144
Lee C, Jeong S-K (2016) A novel superconcentrated aqueous electrolyte to improve the electrochemical performance of calcium-ion batteries. Chem Lett 45(12):1447–1449
Buchner R, Chen T, Hefter G (2004) Complexity in “simple” electrolyte solutions: ion pairing in MgSO4 (aq). J Phys Chem B 108(7):2365–2375
Zhang Y-H, Chan CK (2000) Study of contact ion pairs of supersaturated magnesium sulfate solutions using Raman scattering of levitated single droplets. J Phys Chem A 104(40):9191–9196
Kester DR, Pytkowicx RM (1969) Sodium, magnesium, and calcium sulfate ion-pairs in seawater at 25°C. Limnol Oceanogr 14(5):686–692
Nam KW, Kim S, Lee S, Salama M, Shterenberg I, Gofer Y, Kim J-S, Yang E, Park CS, Kim J-S (2015) The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett 15(6):4071–4079
Novák P, Scheifele W, Joho F, Haas O (1995) Electrochemical insertion of magnesium into hydrated vanadium bronzes. J Electrochem Soc 142(8):2544–2550
Yuan W, Günter JR (1995) Insertion of bivalent cations into monoclinic NbS3 prepared under high pressure and their secondary batteries. Solid State Ionics 76(3–4):253–258
Novák P, Shklover V, Nesper R (1994) Magnesium insertion in vanadium oxides: a structural study. Z Phys Chem 185(1):51–68
Shklover V, Haibach T, Ried F, Nesper R, Novak P (1996) Crystal structure of the product of Mg2 + insertion into V2O5 single crystals. J Solid State Chem 123(2):317–323
Galy J, Pouchard M (1967) Oxygenated vanadium bronzes with divalent insertion element. V2O5-VO2-MGO and V2O5-VO2-zno systems. Bull Soc Chim Fr 1:261
Bouhaouss A, Aldebert P, Baffier N, Livage J (1985) Ionic intercalation processes in V205 gels. Revue De Chimie Minerale 22(3):417–426
Novák P, Imhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim Acta 45(1):351–367
Song J, Noked M, Gillette E, Duay J, Rubloff G, Lee SB (2015) Activation of a MnO2 cathode by water-stimulated Mg 2 + insertion for a magnesium ion battery. Phys Chem Chem Phys 17(7):5256–5264
Havel J, Hoegfeldt E (1974) Activities in the systems Mg (2 +)‐NA (+)‐X (‐)‐CLO4 (‐) WITH X = CL (‐), BR (‐) AND SCN (‐). The possible formation of Mgx (+) ion Pairs. ChemInform 5(15)
Porter C, Boyd R (1971) A dielectric study of the effects of melting on molecular relaxation in poly(ethylene oxide) and polyoxymethylene. Macromolecules 4(5):589–594
Mao G, Saboungi ML, Price DL, Armand MB, Howells WS (2000) Structure of liquid PEO-LiTFSI electrolyte. Phys Rev Lett 84:5536–5539
Bakker A, Gejji S, Lindgren J, Hermansson K, Probst MM (1995) Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca. Sr and Ba. Polymer 36(23):4371–4378
Pesko DM, Timachova K, Bhattacharya R, Smith MC, Villaluenga I, Newman J, Balsara NP (2017) Negative transference numbers in poly(ethylene oxide)-based electrolytes. J Electrochem Soc 164(11):E3569–E3575
Panday A, Mullin S, Gomez ED, Wanakule N, Chen VL, Hexemer A, Pople J, Balsara NP (2009) Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42:4632–4637
Chintapalli M, Le TNP, Venkatesan NR, Mackay NG, Rojas AA, Thelen JL, Chen XC, Devaux D, Balsara NP (2016) Structure and Ionic Conductivity of Polystyrene-block-poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit. Macromolecules acs.macromol.5b02620
Rey I, Lassègues JC, Grondin J, Servant L (1998) Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim Acta 43:1505–1510
Edman L (2000) Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO-LiTFSI. J Phys Chem B 104:7254–7258
Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39:1620–1629
Reddy MJ, Chu PP (2002) Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J Power Sources 109(2):340–346
Vittadello M, Biscazzo S, Lavina S, Fauri M, Noto VD (2002) Vibrational studies of the ion—polymer interactions in a -hydro-N-oligo (oxyethylene). Solid State Ionic 147:341–347
Di Noto V, Vittadello M (2002) Mechanism of ionic conductivity in poly(ethylene glycol 400)/(MgCl2)x polymer electrolytes: studies based on electrical spectroscopy. Solid State Ionics 147(3):309–316
Di Noto V (2002) Electrical spectroscopy studies of lithium and magnesium polymer electrolytes based on PEG400. J Phy Chem B 106(43):11139–11154
Thelen JL, Inceoglu S, Venkatesan NR, Mackay NG, Balsara NP (2016) Relationship between Ion dissociation, melt morphology, and electrochemical performance of lithium and magnesium single-ion conducting block copolymers. Macromolecules 23(2016):9139–9147
Saito M, Ikuta H, Uchimoto Y, Wakihara M (2003) Interaction between the Lewis acid group of a borate ester and various anion species in a polymer electrolyte containing Mg salt. J Phys ChemB 107:11608–11614
Lee DK, Allcock HR (2010) The effects of cations and anions on the ionic conductivity of poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] doped with lithium and magnesium salts of trifluoromethanesulfonate and bis(trifluoromethanesulfonyl)imidate. Solid State Ionics 181:1721–1726
Ryu S-W, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM (2005) Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J Electrochem Soc 152:A158
Kato Y, Yokoyama S, Ikuta H, Uchimoto Y, Wakihara M (2001) Thermally stable polymer electrolyte plasticized with PEG-borate ester for lithium secondary battery. Electrochem Commun 3:128–130
Savoie BM, Webb MA, Miller TF (2016) Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. J Phys Chem Lett 8:1–26
Diederichsen KM, Buss HG, McCloskey BD (2017) The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 50(10):3831–3840
Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z (2014) Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta 133:529–538
Osman Z, Zainol NH, Samin SM, Chong WG, Md Isa KB, Othman L, Supa’At I, Sonsudin F (2014) Electrochemical impedance spectroscopy studies of magnesium-based polymethylmethacrylate gel polymer electrolytes. Electrochim Acta 131:148–153
Kumar GG, Munichandraiah N (2002) Poly (methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta 47(7):1013–1022
Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634
Tang X, Muchakayala R, Song S, Zhang Z, Polu AR (2016) A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. J Ind Eng Chem 37:67–74
Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169–172
Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy 1:16039
Hayes AC, Kruus P, Adams WA (1984) Raman spectroscopic study of aqueous (NH4)2SO4 and ZnSO4 solutions. J Solution Chem 13(1):61–75
Fujii K, Fujimori T, Takamuku T, Kanzaki R, Umebayashi Y, Ishiguro S-I (2006) Conformational equilibrium of bis (trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J Phys Chem B 110(16):8179–8183
Herstedt M, Smirnov M, Johansson P, Chami M, Grondin J, Servant L, Lassegues J (2005) Spectroscopic characterization of the conformational states of the bis (trifluoromethanesulfonyl) imide anion (TFSI −). J Raman Spectrosc 36(8):762–770
Martinelli A, Matic A, Johansson P, Jacobsson P, Börjesson L, Fernicola A, Panero S, Scrosati B, Ohno H (2011) Conformational evolution of TFSI − in protic and aprotic ionic liquids. J Raman Spectrosc 42(3):522–528
Fujii K, Nonaka T, Akimoto Y, Umebayashi Y, Ishiguro S-I (2008) Solvation structures of some transition metal (II) ions in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide. Anal Sci 24(10):1377–1380
Fujii K, Nonaka T, Akimoto Y, Umebayashi Y, Ishiguro S-I (2008) Solvation Structures of Some Transition Metal(II) Ions in a Room-Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)amide. Anal Sci 24(10):1377–1380
Arellano IH, Huang J, Pendleton P (2016) Computational insights into the molecular interaction and ion-pair structures of a novel zinc-functionalized ionic liquid,[Emim][Zn (TFSI) 3]. Spectrochim Acta Part A Mol Biomol Spectrosc 153:6–15
Li XY, Nie J (2003) Density functional theory study on metal bis (trifluoromethylsulfonyl) imides: electronic structures, energies, catalysis, and predictions. J Phys Chem A 107(31):6007–6013
Frech R, Huang W (1993) Ionic association in poly (propylene oxide) complexed with divalent metal trifluoromethanesulfonate salts. Solid State Ionics 66(1–2):183–188
Kumar GG, Sampath S (2004) Spectroscopic characterization of a gel polymer electrolyte of zinc triflate and polyacrylonitrile. Polymer 45(9):2889–2895
Kumar GG, Sampath S (2005) Electrochemical and spectroscopic investigations of a gel polymer electrolyte of poly (methylmethacrylate) and zinc triflate. Solid State Ionics 176(7):773–780
Latham RJ, Linford RG, Schlindwein WS (1989) Cation-oxygen geometry in polymer electrolytes: interpretation of EXAFS results. Faraday Discuss Chem Soc 88:103–111
Einset A, Schlindwein W, Latham R, Linford R, Pynenburg R (1991) Investigation of ZnBr 2: PEO polymer electrolyte characteristics. J Electrochem Soc 138(6):1569–1574
Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK (2016) Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces
Westerhausen M, Koch A, Görls H, Krieck S (2016) Heavy Grignard Reagents: Synthesis. Chemical Behavior, and Reactivity. Chemistry-A European Journal, Physical and Structural Properties
Dompablo MEA-D, Krich C, Nava-Avendaño J, Biškup N, Palacín MR, Bardé F (2016) A joint computational and experimental evaluation of CaMn2O4 polymorphs as cathode materials for Ca ion batteries. Chem Mater 28(19):6886–6893
Wang RY, Wessells CD, Huggins RA, Cui Y (2013) Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries. Nano Lett 13(11):5748–5752
Padigi P, Goncher G, Evans D, Solanki R (2015) Potassium barium hexacyanoferrate—a potential cathode material for rechargeable calcium ion batteries. J Power Sources 273:460–464
Lipson AL, Pan B, Lapidus SH, Liao C, Vaughey JT, Ingram BJ (2015) Rechargeable Ca-Ion Batteries: a New Energy Storage System. Chem Mater 27(24):8442–8447
Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, Brafman M, Maginn E, Curtiss LA, Persson KA (2015) The Electrolyte Genome project: a big data approach in battery materials discovery. Comput Mater Sci 103:56–67
Qu X, Zhang Y, Rajput NN, Jain A, Maginn E, Persson KA (2017) Computational design of new magnesium electrolytes with improved properties. J Phys Chem C 121(30):16126–16136
Johansson P, Jacobsson P (2006) Rational design of electrolyte components by ab initio calculations. J Power Sources 153(2):336–344
Wahab A, Douvris C, Klíma J, Šembera F, Ugolotti J, Kaleta J, Ludvík J, Michl J (2017) Anodic Oxidation of 18 Halogenated and/or Methylated Derivatives of CB11H12–. Inorg Chem 56(1):269–276
Frankel GS (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186–2198
Kim DY, Park MS, Lim Y, Kang Y-S, Park J-H, Doo S-G (2015) Computational comparison of oxidation stability: solvent/salt monomers vs. solvent–solvent/salt pairs. J Power Sources 288:393–400