Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review

Nav Nidhi Rajput1, Trevor J. Seguin1, Brandon M. Wood1, Xiaohui Qu1, Kristin A. Persson1
1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418

Gonzalez F (2016) Advanced and post lithium-ion batteries 2016-2026: technologies, markets, Forecasts 2016, Retrieved from http://www.idtechex.com/

Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10

Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Angell M, Chen C, Yang J, Hwang B-J, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328

Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium applications to energy storage. J Electrochem Soc 137(3):775–780

Aurbach D, Skaletsky R, Gofer Y (1991) The electrochemical behavior of calcium electrodes in a few organic electrolytes. J Electrochem Soc 138(12):3536–3545

McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138(2):645–656

Mayer A (1990) Electrodeposition of aluminum, aluminum/magnesium alloys, and magnesium from organometallic electrolytes

Aurbach D, Gofer Y, Lu Z, Schechter A, Chusid O, Gizbar H, Cohen Y, Ashkenazi V, Moshkovich M, Turgeman R, Levi E (2001) A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J Power Sources 97–98:28–32

Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 51(4):933–935

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. 1:16119

Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK (2016) Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces 8(5):3021–3031

Aurbach D, Cohen Y, Moshkovich M (2001) The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem Solid State Lett 4(8):A113–A116

Yglesias M (2012) Electric car batteries are very expensive 2012, Retrieved from http://www.slate.com/blogs/moneybox/

Liu M, Jain A, Rong Z, Qu X, Canepa P, Malik R, Ceder G, Persson KA (2016) Evaluation of sulfur spinel compounds for multivalent battery cathode applications. Energy Environ Sci 9(10):3201–3209

Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, Persson K, Ceder G (2015) Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater 27(17):6016–6021

Guerfi A, Trottier J, Boyano I, De Meatza I, Blazquez JA, Brewer S, Ryder KS, Vijh A, Zaghib K (2014) High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J Power Sources 248:1099–1104

Han S-D, Kim S, Li D, Petkov V, Yoo HD, Phillips PJ, Wang H, Kim JJ, More KL, Key B, Klie RF, Cabana J, Stamenkovic VR, Fister TT, Markovic NM, Burrell AK, Tepavcevic S, Vaughey JT (2017) Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem Mater 29(11):4874–4884

Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727

Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073

Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427

Doe RE, Han R, Hwang J, Gmitter AJ, Shterenberg I, Yoo HD, Pour N, Aurbach D (2014) Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem Commun 50(2):243–245

Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720

Ponrouch A, Frontera C, Bardé F, Palacín MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169–172

Bruce PG, Hardgrave MT, Vincent CA (1989) Steady state current flow in solid binary electrolyte cells. J Electroanal Chem Interfacial Electrochem 271(1):27–34

Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263):938–943

Nancollas GH (1966) Interactions in electrolyte solutions. Elsevier, Amsterdam

Seo DM, Borodin O, Han S-D, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J Electrochem Soc 159(9):A1489–A1500

Henderson WA (2006) Glyme − lithium salt phase behavior. J. Phys. Chem. B 110(26):13177–13183

Rajput NN, Qu X, Sa N, Burrell AK, Persson KA (2015) The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J Am Chem Soc 137:3411–3420

Heilman-Miller SL, Thirumalai D, Woodson SA (2001) Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. J Mol Biol 306(5):1157–1166

Giffin GA, Moretti A, Jeong S, Passerini S (2014) Complex nature of ionic coordination in magnesium ionic liquid-based electrolytes: solvates with mobile Mg2 + cations. J Phys Chem C 118(19):9966–9973

Doucey L, Revault M, Lautié A, Chaussé A, Messina R (1999) A study of the Li/Li + couple in DMC and PC solvents: part 1: characterization of LiAsF6/DMC and LiAsF6/PC solutions. Electrochim Acta 44(14):2371–2377

Baskin A, Prendergast D (2016) Exploration of the detailed conditions for reductive stability of Mg (TFSI) 2 in diglyme: implications for multivalent electrolytes. J Phys Chem C 120(7):3583–3594

Wright MR (2007) An introduction to aqueous electrolyte solutions. Wiley, Hoboken

Smithson J, Williams R (1958) A possible differentiation between ion-pairs and complexes. J Chem Soc (Resumed) 81:457–462

Lu Z, Schechter A, Moshkovich M, Aurbach D (1999) On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 466(2):203–217

Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86

Tran TT, Lamanna W, Obrovac M (2012) Evaluation of Mg [N (SO2CF3) 2] 2/acetonitrile electrolyte for use in Mg-ion cells. J Electrochem Soc 159(12):A2005–A2009

Elgquist B, Wedborg M (1975) Stability of ion pairs from gypsum solubility degree of ion pair formation between the major constituents of seawater. Mar Chem 3(3):215–225

Okoshi M, Yamada Y, Yamada A, Nakai H (2013) Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc 160(11):A2160–A2165

Brown I (1988) What factors determine cation coordination numbers? Acta Crystallogr Sect B: Struct Sci 44(6):545–553

Lapidus SH, Rajput NN, Qu X, Chapman KW, Persson KA, Chupas PJ (2014) Solvation structure and energetics of electrolytes for multivalent energy storage. Phys Chem Chem Phys 16(40):21941–21945

Jeremias S, Giffin GA, Moretti A, Jeong S, Passerini S (2014) Mechanisms of magnesium ion transport in pyrrolidinium bis (trifluoromethanesulfonyl) imide-based ionic liquid electrolytes. J Phys Chem C 118(49):28361–28368

Sa N, Rajput NN, Wang H, Key B, Ferrandon M, Srinivasan V, Persson KA, Burrell AK, Vaughey JT (2016) Concentration-dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis (trifluoromethane sulfonyl) imide in diglyme. RSC Adv 6(114):113663–113670

Watkins T, Buttry DA (2015) Determination of Mg2 + speciation in a TFSI–based ionic liquid with and without chelating ethers using Raman spectroscopy. J Phys Chem B 119(23):7003–7014

Kimura T, Fujii K, Sato Y, Morita M, Yoshimoto N (2015) Solvation of magnesium ion in triglyme-based electrolyte solutions. J Phys Chem C 119(33):18911–18917

Brouillette D, Irish DE, Taylor NJ, Perron G, Odziemkowski M, Desnoyers JE (2002) Stable solvates in solution of lithium bis (trifluoromethylsulfone) imide in glymes and other aprotic solvents: phase diagrams, crystallography and Raman spectroscopy. Phys Chem Chem Phys 4(24):6063–6071

Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis (trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115(37):18384–18394

Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116(36):11323–11331

Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, Gu M, Deng X, Xu S, Han KS (2014) Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 12:750–759

Seo DM, Boyle PD, Sommer RD, Daubert JS, Borodin O, Henderson WA (2014) Solvate structures and spectroscopic characterization of LiTFSI electrolytes. J Phys Chem B 118(47):13601–13608

Mohtadi R, Mizuno F (2014) Magnesium batteries: current state of the art, issues and future perspectives. Beilstein Journal of Nanotechnology 5(1):1291–1311

Salama M, Shterenberg I, Gizbar H, Nitoker Eliaz N, Kosa M, Keinan-Adamsky K, Afri M, Shimon LJ, Gottlieb HE, Major DT (2016) Unique behavior of dimethoxyethane (DME)/Mg (N (SO2CF3) 2) 2 solutions. J Phys Chem C 120:19586–19594

Hefter G (2006) When spectroscopy fails: the measurement of ion pairing. Pure Appl Chem 78(8):1571–1586

Sa N, Pan B, Saha-Shah A, Hubaud AA, Vaughey JT, Baker LA, Liao C, Burrell AK (2016) Role of chloride for a simple, non-Grignard Mg electrolyte in ether-based solvents. ACS Appl Mater Interfaces 8(25):16002–16008

Shao Y, Liu T, Li G, Gu M, Nie Z, Engelhard M, Xiao J, Lv D, Wang C, Zhang JG, Liu J (2013) Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep 3:3130

Mohtadi R, Matsui M, Arthur TS, Hwang S-J (2012) Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed 51(39):9780–9783

Chang J, Haasch RT, Kim J, Spila T, Braun PV, Gewirth AA, Nuzzo RG (2015) Synergetic role of Li + during Mg electrodeposition/dissolution in borohydride diglyme electrolyte solution: voltammetric stripping behaviors on a Pt microelectrode indicative of Mg–Li alloying and facilitated dissolution. ACS Appl Mater Interfaces 7(4):2494–2502

Hu JZ, Rajput NN, Wan C, Shao Y, Deng X, Jaegers NR, Hu M, Chen Y, Shin Y, Monk J, Chen Z, Qin Z, Mueller KT, Liu J, Persson KA (2018) 25 Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes. Nano Energy

Tutusaus O, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV (2015) An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed 54(27):7900–7904

McArthur SG, Jay R, Geng L, Guo J, Lavallo V (2017) Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries. Chem Commun 53(32):4453–4456

Strauss SH (1993) The search for larger and more weakly coordinating anions. Chem Rev 93(3):927–942

Douvris C, Michl J (2013) Update 1 of: chemistry of the carba-closo-dodecaborate(−) anion, CB11H12–. Chem Rev 113(10):PR179–PR233

Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73

Aurbach D, Gizbar H, Schechter A, Chusid O, Gottlieb HE, Gofer Y, Goldberg I (2002) Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc 149(2):A115–A121

Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950

Gaddum L, French H (1927) The electrolysis of Grignard solutions. J Am Chem Soc 49(5):1295–1299

Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279

Nakayama Y, Kudo Y, Oki H, Yamamoto K, Kitajima Y, Noda K (2008) Complex structures and electrochemical properties of magnesium electrolytes. J Electrochem Soc 155(10):A754–A759

Gizbar H, Vestfrid Y, Chusid O, Gofer Y, Gottlieb HE, Marks V, Aurbach D (2004) Alkyl group transmetalation reactions in electrolytic solutions studied by multinuclear NMR. Organometallics 23(16):3826–3831

Vestfried Y, Chusid O, Goffer Y, Aped P, Aurbach D (2007) Structural analysis of electrolyte solutions comprising magnesium−aluminate chloro−organic complexes by Raman spectroscopy. Organometallics 26(13):3130–3137

Liu T, Cox JT, Hu D, Deng X, Hu J, Hu MY, Xiao J, Shao Y, Tang K, Liu J (2015) A fundamental study on the [(μ-Cl) 3 Mg 2 (THF) 6] + dimer electrolytes for rechargeable Mg batteries. Chem Commun 51(12):2312–2315

Pour N, Gofer Y, Major DT, Aurbach D (2011) Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc 133(16):6270–6278

Liu T, Shao Y, Li G, Gu M, Hu J, Xu S, Nie Z, Chen X, Wang C, Liu J (2014) A facile approach using MgCl2 to formulate high performance Mg2 + electrolytes for rechargeable Mg batteries. J Mater Chem A 2(10):3430–3438

Wan LF, Prendergast D (2014) The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra. J Am Chem Soc 136(41):14456–14464

Cheng Y, Stolley RM, Han KS, Shao Y, Arey BW, Washton NM, Mueller KT, Helm ML, Sprenkle VL, Liu J (2015) Highly active electrolytes for rechargeable Mg batteries based on a [Mg 2 (μ-Cl) 2] 2 + cation complex in dimethoxyethane. Phys Chem Chem Phys 17(20):13307–13314

Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D (2014) The challenge of developing rechargeable magnesium batteries. MRS Bull 39(05):453–460

Mizrahi O, Amir N, Pollak E, Chusid O, Marks V, Gottlieb H, Larush L, Zinigrad E, Aurbach D (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109

Cheng Y, Shao Y, Zhang J-G, Sprenkle VL, Liu J, Li G (2014) High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun 50(68):9644–9646

Gao T, Han F, Zhu Y, Suo L, Luo C, Xu K, Wang C (2015) Hybrid Mg2 +/Li + battery with long cycle life and high rate capability. Adv Energy Mater 5 (5)

Pan B, Huang J, Sa N, Brombosz SM, Vaughey JT, Zhang L, Burrell AK, Zhang Z, Liao C (2016) MgCl2: the key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries. J Electrochem Soc 163(8):A1672–A1677

Muldoon J, Bucur CB, Oliver AG, Zajicek J, Allred GD, Boggess WC (2013) Corrosion of magnesium electrolytes: chlorides—the culprit. Energy Environ Sci 6(2):482–487

Nelson EG, Kampf JW, Bartlett BM (2014) Enhanced oxidative stability of non-Grignard magnesium electrolytes through ligand modification. Chem Commun 50(40):5193–5195

Wang F-F, Guo Y-S, Yang J, Nuli Y, Hirano S-I (2012) A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem Commun 48(87):10763–10765

Zhao-Karger Z, Zhao X, Fuhr O, Fichtner M (2013) Bisamide-based non-nucleophilic electrolytes for rechargeable magnesium batteries. Rsc Adv 3(37):16330–16335

Pan B, Lau K-C, Vaughey JT, Zhang L, Zhang Z, Liao C (2017) Ionic liquid as an effective additive for rechargeable magnesium batteries. J Electrochem Soc 164(4):A902–A906

Guo Y-S, Zhang F, Yang J, Wang F-F, NuLi Y, Hirano S-I (2012) Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci 5(10):9100–9106

Barile CJ, Barile EC, Zavadil KR, Nuzzo RG, Gewirth AA (2014) Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition. J Phys Chem C 118(48):27623–27630

Canepa P, Jayaraman S, Cheng L, Rajput NN, Richards WD, Gautam GS, Curtiss LA, Persson KA, Ceder G (2015) Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy Environ Sci 8(12):3718–3730

Barile CJ, Spatney R, Zavadil KR, Gewirth AA (2014) Investigating the reversibility of in situ generated magnesium organohaloaluminates for magnesium deposition and dissolution. J Phys Chem C 118(20):10694–10699

Son S-B, Gao T, Harvey SP, Steirer KX, Stokes A, Norman A, Wang C, Cresce A, Xu K, Ban C (2018) An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem 10(5):532-539

Dudev T, Cowan J, Lim C (1999) Competitive binding in magnesium coordination chemistry: water versus ligands of biological interest. J Am Chem Soc 121(33):7665–7673

Pye CC, Rudolph W (1998) An ab initio and Raman investigation of magnesium (II) hydration. J Phys Chem A 102(48):9933–9943

Wahab A, Mahiuddin S, Hefter G, Kunz W, Minofar B, Jungwirth P (2005) Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman spectra, and molecular dynamics simulations of aqueous solutions of Mg (OAc) 2 and Mg (NO3) 2: Hofmeister effects and ion pair formation. J Phys Chem B 109(50):24108–24120

Yagi S, Fukuda M, Ichitsubo T, Nitta K, Mizumaki M, Matsubara E (2015) EQCM analysis of redox behavior of CuFe Prussian blue analog in mg battery electrolytes. J Electrochem Soc 162(12):A2356–A2361

Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 6(18):3578–3591

Novak P, Desilvestro J (1993) Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc 140(1):140–144

Lee C, Jeong S-K (2016) A novel superconcentrated aqueous electrolyte to improve the electrochemical performance of calcium-ion batteries. Chem Lett 45(12):1447–1449

Buchner R, Chen T, Hefter G (2004) Complexity in “simple” electrolyte solutions: ion pairing in MgSO4 (aq). J Phys Chem B 108(7):2365–2375

Zhang Y-H, Chan CK (2000) Study of contact ion pairs of supersaturated magnesium sulfate solutions using Raman scattering of levitated single droplets. J Phys Chem A 104(40):9191–9196

Kester DR, Pytkowicx RM (1969) Sodium, magnesium, and calcium sulfate ion-pairs in seawater at 25°C. Limnol Oceanogr 14(5):686–692

Nam KW, Kim S, Lee S, Salama M, Shterenberg I, Gofer Y, Kim J-S, Yang E, Park CS, Kim J-S (2015) The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett 15(6):4071–4079

Novák P, Scheifele W, Joho F, Haas O (1995) Electrochemical insertion of magnesium into hydrated vanadium bronzes. J Electrochem Soc 142(8):2544–2550

Yuan W, Günter JR (1995) Insertion of bivalent cations into monoclinic NbS3 prepared under high pressure and their secondary batteries. Solid State Ionics 76(3–4):253–258

Novák P, Shklover V, Nesper R (1994) Magnesium insertion in vanadium oxides: a structural study. Z Phys Chem 185(1):51–68

Shklover V, Haibach T, Ried F, Nesper R, Novak P (1996) Crystal structure of the product of Mg2 + insertion into V2O5 single crystals. J Solid State Chem 123(2):317–323

Galy J, Pouchard M (1967) Oxygenated vanadium bronzes with divalent insertion element. V2O5-VO2-MGO and V2O5-VO2-zno systems. Bull Soc Chim Fr 1:261

Bouhaouss A, Aldebert P, Baffier N, Livage J (1985) Ionic intercalation processes in V205 gels. Revue De Chimie Minerale 22(3):417–426

Novák P, Imhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim Acta 45(1):351–367

Song J, Noked M, Gillette E, Duay J, Rubloff G, Lee SB (2015) Activation of a MnO2 cathode by water-stimulated Mg 2 + insertion for a magnesium ion battery. Phys Chem Chem Phys 17(7):5256–5264

Havel J, Hoegfeldt E (1974) Activities in the systems Mg (2 +)‐NA (+)‐X (‐)‐CLO4 (‐) WITH X = CL (‐), BR (‐) AND SCN (‐). The possible formation of Mgx (+) ion Pairs. ChemInform 5(15)

Porter C, Boyd R (1971) A dielectric study of the effects of melting on molecular relaxation in poly(ethylene oxide) and polyoxymethylene. Macromolecules 4(5):589–594

Mao G, Saboungi ML, Price DL, Armand MB, Howells WS (2000) Structure of liquid PEO-LiTFSI electrolyte. Phys Rev Lett 84:5536–5539

Bakker A, Gejji S, Lindgren J, Hermansson K, Probst MM (1995) Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca. Sr and Ba. Polymer 36(23):4371–4378

Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106:4585–4621

Pesko DM, Timachova K, Bhattacharya R, Smith MC, Villaluenga I, Newman J, Balsara NP (2017) Negative transference numbers in poly(ethylene oxide)-based electrolytes. J Electrochem Soc 164(11):E3569–E3575

Panday A, Mullin S, Gomez ED, Wanakule N, Chen VL, Hexemer A, Pople J, Balsara NP (2009) Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42:4632–4637

Chintapalli M, Le TNP, Venkatesan NR, Mackay NG, Rojas AA, Thelen JL, Chen XC, Devaux D, Balsara NP (2016) Structure and Ionic Conductivity of Polystyrene-block-poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit. Macromolecules acs.macromol.5b02620

Rey I, Lassègues JC, Grondin J, Servant L (1998) Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim Acta 43:1505–1510

Edman L (2000) Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO-LiTFSI. J Phys Chem B 104:7254–7258

Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39:1620–1629

Reddy MJ, Chu PP (2002) Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J Power Sources 109(2):340–346

Vittadello M, Biscazzo S, Lavina S, Fauri M, Noto VD (2002) Vibrational studies of the ion—polymer interactions in a -hydro-N-oligo (oxyethylene). Solid State Ionic 147:341–347

Di Noto V, Vittadello M (2002) Mechanism of ionic conductivity in poly(ethylene glycol 400)/(MgCl2)x polymer electrolytes: studies based on electrical spectroscopy. Solid State Ionics 147(3):309–316

Di Noto V (2002) Electrical spectroscopy studies of lithium and magnesium polymer electrolytes based on PEG400. J Phy Chem B 106(43):11139–11154

Thelen JL, Inceoglu S, Venkatesan NR, Mackay NG, Balsara NP (2016) Relationship between Ion dissociation, melt morphology, and electrochemical performance of lithium and magnesium single-ion conducting block copolymers. Macromolecules 23(2016):9139–9147

Saito M, Ikuta H, Uchimoto Y, Wakihara M (2003) Interaction between the Lewis acid group of a borate ester and various anion species in a polymer electrolyte containing Mg salt. J Phys ChemB 107:11608–11614

Lee DK, Allcock HR (2010) The effects of cations and anions on the ionic conductivity of poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] doped with lithium and magnesium salts of trifluoromethanesulfonate and bis(trifluoromethanesulfonyl)imidate. Solid State Ionics 181:1721–1726

Ryu S-W, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM (2005) Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J Electrochem Soc 152:A158

Kato Y, Yokoyama S, Ikuta H, Uchimoto Y, Wakihara M (2001) Thermally stable polymer electrolyte plasticized with PEG-borate ester for lithium secondary battery. Electrochem Commun 3:128–130

Savoie BM, Webb MA, Miller TF (2016) Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. J Phys Chem Lett 8:1–26

Diederichsen KM, Buss HG, McCloskey BD (2017) The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 50(10):3831–3840

Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z (2014) Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta 133:529–538

Osman Z, Zainol NH, Samin SM, Chong WG, Md Isa KB, Othman L, Supa’At I, Sonsudin F (2014) Electrochemical impedance spectroscopy studies of magnesium-based polymethylmethacrylate gel polymer electrolytes. Electrochim Acta 131:148–153

Kumar GG, Munichandraiah N (2002) Poly (methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta 47(7):1013–1022

Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634

Tang X, Muchakayala R, Song S, Zhang Z, Polu AR (2016) A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications. J Ind Eng Chem 37:67–74

Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169–172

Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy 1:16039

Hayes AC, Kruus P, Adams WA (1984) Raman spectroscopic study of aqueous (NH4)2SO4 and ZnSO4 solutions. J Solution Chem 13(1):61–75

Fujii K, Fujimori T, Takamuku T, Kanzaki R, Umebayashi Y, Ishiguro S-I (2006) Conformational equilibrium of bis (trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J Phys Chem B 110(16):8179–8183

Herstedt M, Smirnov M, Johansson P, Chami M, Grondin J, Servant L, Lassegues J (2005) Spectroscopic characterization of the conformational states of the bis (trifluoromethanesulfonyl) imide anion (TFSI −). J Raman Spectrosc 36(8):762–770

Martinelli A, Matic A, Johansson P, Jacobsson P, Börjesson L, Fernicola A, Panero S, Scrosati B, Ohno H (2011) Conformational evolution of TFSI − in protic and aprotic ionic liquids. J Raman Spectrosc 42(3):522–528

Fujii K, Nonaka T, Akimoto Y, Umebayashi Y, Ishiguro S-I (2008) Solvation structures of some transition metal (II) ions in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide. Anal Sci 24(10):1377–1380

Fujii K, Nonaka T, Akimoto Y, Umebayashi Y, Ishiguro S-I (2008) Solvation Structures of Some Transition Metal(II) Ions in a Room-Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)amide. Anal Sci 24(10):1377–1380

Arellano IH, Huang J, Pendleton P (2016) Computational insights into the molecular interaction and ion-pair structures of a novel zinc-functionalized ionic liquid,[Emim][Zn (TFSI) 3]. Spectrochim Acta Part A Mol Biomol Spectrosc 153:6–15

Li XY, Nie J (2003) Density functional theory study on metal bis (trifluoromethylsulfonyl) imides: electronic structures, energies, catalysis, and predictions. J Phys Chem A 107(31):6007–6013

Frech R, Huang W (1993) Ionic association in poly (propylene oxide) complexed with divalent metal trifluoromethanesulfonate salts. Solid State Ionics 66(1–2):183–188

Kumar GG, Sampath S (2004) Spectroscopic characterization of a gel polymer electrolyte of zinc triflate and polyacrylonitrile. Polymer 45(9):2889–2895

Kumar GG, Sampath S (2005) Electrochemical and spectroscopic investigations of a gel polymer electrolyte of poly (methylmethacrylate) and zinc triflate. Solid State Ionics 176(7):773–780

Latham RJ, Linford RG, Schlindwein WS (1989) Cation-oxygen geometry in polymer electrolytes: interpretation of EXAFS results. Faraday Discuss Chem Soc 88:103–111

Einset A, Schlindwein W, Latham R, Linford R, Pynenburg R (1991) Investigation of ZnBr 2: PEO polymer electrolyte characteristics. J Electrochem Soc 138(6):1569–1574

Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK (2016) Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces

Westerhausen M, Koch A, Görls H, Krieck S (2016) Heavy Grignard Reagents: Synthesis. Chemical Behavior, and Reactivity. Chemistry-A European Journal, Physical and Structural Properties

Dompablo MEA-D, Krich C, Nava-Avendaño J, Biškup N, Palacín MR, Bardé F (2016) A joint computational and experimental evaluation of CaMn2O4 polymorphs as cathode materials for Ca ion batteries. Chem Mater 28(19):6886–6893

Wang RY, Wessells CD, Huggins RA, Cui Y (2013) Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries. Nano Lett 13(11):5748–5752

Padigi P, Goncher G, Evans D, Solanki R (2015) Potassium barium hexacyanoferrate—a potential cathode material for rechargeable calcium ion batteries. J Power Sources 273:460–464

Lipson AL, Pan B, Lapidus SH, Liao C, Vaughey JT, Ingram BJ (2015) Rechargeable Ca-Ion Batteries: a New Energy Storage System. Chem Mater 27(24):8442–8447

Pauling L (1927) The sizes of ions and the structure of ionic crystals. J Am Chem Soc 49(3):765–790

Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, Brafman M, Maginn E, Curtiss LA, Persson KA (2015) The Electrolyte Genome project: a big data approach in battery materials discovery. Comput Mater Sci 103:56–67

Qu X, Zhang Y, Rajput NN, Jain A, Maginn E, Persson KA (2017) Computational design of new magnesium electrolytes with improved properties. J Phys Chem C 121(30):16126–16136

Johansson P, Jacobsson P (2006) Rational design of electrolyte components by ab initio calculations. J Power Sources 153(2):336–344

Wahab A, Douvris C, Klíma J, Šembera F, Ugolotti J, Kaleta J, Ludvík J, Michl J (2017) Anodic Oxidation of 18 Halogenated and/or Methylated Derivatives of CB11H12–. Inorg Chem 56(1):269–276

Frankel GS (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186–2198

Kim DY, Park MS, Lim Y, Kang Y-S, Park J-H, Doo S-G (2015) Computational comparison of oxidation stability: solvent/salt monomers vs. solvent–solvent/salt pairs. J Power Sources 288:393–400

Zhao-Karger Z, Gil Bardaji ME, Fuhr O, Fichtner M (2017) A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. Journal of Materials Chemistry A 5(22):10815–10820