Elucidating Orbital Delocalization Effects on Boosting Electrochemiluminescence Efficiency of Carbon Nitrides

Advanced Optical Materials - Tập 10 Số 18 - 2022
Yanfeng Fang1, Yuhua Hou1, Hong Yang1, Ran Chen1, Wang Li1, Jin Ma1, Dan Han1, Xuwen Cao1, Songqin Liu1, Yanfei Shen1, Yuanjian Zhang1
1Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering & Medical School, Southeast University, Nanjing, 211189 China

Tóm tắt

AbstractHighly efficient inter‐conversion of different types of energy is the core of science and technology. Among them, electrochemiluminescence (ECL), an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool across diverse fields in addressing global energy, environment, and health challenges. Nonetheless, the ECL efficiency (ΦECL) of most luminophores in aqueous solutions is low, significantly hampering their broad applications. Along this line, developing ECL luminophores with high ΦECL and understanding the associated intrinsic factors is highly envisioned. Herein, taking carbon nitride (CN) with rigid 2D backbones as an emerging model luminophore, it is reported that the orbital delocalization is a unified and quantifiable factor for its ΦECL. Behind the complicated transformation of molecular structures of cyano‐terminal groups and triazine/heptazine basal frameworks, the orbital delocalization of CN is found to be generally improved at an elevated condensation temperature. Such intrinsic evolution in electronic structure favored the electron injection in excitation and follow‐up photon emission in ECL for CN. As a result, the cathodic ΦECL of CN is remarkably improved to a new milestone of 24‐fold greater than the previous record.

Từ khóa


Tài liệu tham khảo

10.1038/nprot.2014.060

10.1038/s41467-020-16476-2

10.1021/jacs.8b08080

10.1021/jacs.9b03007

10.1021/acscentsci.0c00484

10.1038/s41467-021-25013-8

10.1002/anie.202007451

10.1021/acs.analchem.9b04537

10.1038/s41467-021-27127-5

10.1002/adma.202100321

10.1002/adma.202105039

10.1021/ja00393a006

10.1002/ange.201402615

10.1021/jacs.9b02547

10.1021/jacs.7b07710

10.1002/anie.202011176

10.1002/ange.201206074

10.1002/anie.200802034

10.1002/anie.200804669

10.1002/anie.201900283

10.1002/anie.201913445

10.1002/anie.201814507

10.1038/nmat2317

10.1038/s41929-021-00605-1

10.1038/s41560-021-00795-9

10.1002/anie.201806514

10.1002/anie.201411170

10.1126/science.aaw3254

10.1021/ja308249k

10.1016/j.chempr.2021.06.010

10.1021/ac300205w

10.1039/C2NR32248J

10.1021/ac403635f

10.1021/jacs.7b06708

10.1021/jacs.8b00515

10.1021/acs.analchem.0c05027

10.1002/anie.201911822

10.1021/acs.analchem.6b01062

10.1021/ja512179x

10.1038/s41467-020-20521-5

10.1002/anie.201908640

10.1021/ja511802c

10.1039/C5NR02905H

10.1016/j.apcatb.2015.05.010

10.1002/adfm.201602779

10.1002/adhm.201500964

10.1007/s12274-016-1073-2

10.1021/acsami.9b19915

10.1021/acs.jpcc.0c04683

10.1021/jacs.7b09260

10.1016/j.carbon.2017.11.091

10.1021/jacs.5b07633

10.1021/ac970736n

10.1002/anie.202015779

10.1021/jacs.9b10476

10.1002/ange.201608553

10.1021/jacs.6b11878

10.1002/adfm.201200922

10.1021/acsami.7b08548

10.1038/s41566-019-0398-2

10.1038/s41467-020-18535-0

10.1002/ange.201810225

10.1021/jacs.7b13510

10.1021/ja070164g

10.1021/ja048669j

10.1021/acs.jpcc.1c06342