Elucidating Critical Proteinopathic Mechanisms and Potential Drug Targets in Neurodegeneration

Springer Science and Business Media LLC - Tập 40 - Trang 313-345 - 2019
Khalid Bashir Dar1,2, Aashiq Hussain Bhat1,2, Shajrul Amin2, Bilal Ahmad Reshi3, Mohammad Afzal Zargar1, Akbar Masood2, Showkat Ahmad Ganie1
1Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
2Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
3Department of Biotechnology, Faculty of Biological Sciences, University of Kashmir, Srinagar, India

Tóm tắt

Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aβ) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer’s, Parkinson’s and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aβ, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood–brain barrier.

Tài liệu tham khảo

Abreu PA, Castro HC, Paes-de-Carvalho R et al (2013) Molecular modeling of a phenylamidine class of NMDA receptor antagonists and the rational design of new triazolyl-amidine derivatives. Chem Biol Drug Des 81:185–197 Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V, Atwal JK, Maloney J (2012) An effector- reduced anti- β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci 32:9677–9789 Agrawal M, Biswas A (2015) Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci 2:54 Aiken CT, Kaake RM, Wang X, Huang L (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteom 10:R110006924 Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K (2018) Neuroinflammatory cytokines induce amyloid beta neurotoxicity through modulating amyloid precursor protein levels/metabolism. Biomed Res Int 2018:1–8 Alonso ADC, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K (2001) Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973 Anandhan A, Rodriguez-Rocha H, Bohovych I et al (2015) Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis 81:76–92 Ansah TA, Ferguson MC, Nayyar T, Deutch AY (2011) Age and durationdependent effects of MPTP on cortical serotonin systems. Neurosci Lett 504(2):160–164 Arima K, Hirai S, Sunohara N et al (1999) Cellular co-localization of phosphorylated tau-and NACP/α-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with lewy bodies. Brain Res 843:53–61 Arndt JW, Qian F, Smith BA, Quan C, Kilambi KP, Bush MW, Walz T, Pepinsky RB, Bussière T, Hamann S, Cameron TO (2018) Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid- β. Sci Rep 8:6412 Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1992) Protein kinase C calcium and phospholipi degradation. Trends Biochem 17:414–417 Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 295:865–868 Banerjee K, Sinha M, Pham CLL et al (2010) Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett 584(8):1571–1576 Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris JM, Mouradian MM, Chase TN (2003) Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 61:293–296 Barthélemy NR, Gabelle A, Hirtz C, Fenaille F, Sergeant N, Schraen-Maschke S, Vialaret J, Buée L, Junot C, Becher F, Lehmann S (2016) Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with lewy bodies. J Alzheimers Dis 51:1033–1043 Bazan NG (1999) Eicosanoids, platelet-activating factor and inflammation. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry. Raven Press Ltd, New York Bellingham SA, Coleman LA, Masters CL, Ca-makaris J, Hill AF (2009) Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem 284:1291–1301 Bespalov MM, Saarma M (2007) GDNF family receptor complexes are emerging drug targets. Trends Pharm Sci 28(2):68–74 Bespalov MM, Sidorova YA, Suleymanova I et al (2016) Novel agonist of GDNF family ligand receptor RET for the treatment of experimental neuropathy. BioRxiv 1:061820 Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases, a mechanistic insight. Biomed Pharmacother 74:101–110 Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510:370–375 Bir A, Sen O, Anand S et al (2014) α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson’s disease. J Neurochem 131:868–877 Bohrmann B, Baumann K, Benz J et al (2012) Gantenerumab: a novel human anti- Aβ antibody demonstrates sustained cerebral amyloid- β binding and elicits cell- mediated removal of human amyloid- β. J Alzheimers Dis 28:49–69 Bosco D, Fava A, Plastino M, Montalcini T, Pujia A (2011) Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med 15:1807–1821 Bouter Y, Noguerola JS, Tucholla P, Crespi GA, Parker MW, Wiltfang J, Miles LA, Bayer TA (2015) Aβ targets of the biosimilar antibodies of bapineuzumab, crenezumab, solanezumab in comparison to an antibody against N- truncated Aβ in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol 130:713–729 Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274(34):23679–23682 Brazier MW, Doctrow SR, Masters CL, Collins SJ (2008) A manganese-superoxide dismutase/catalase mimetic extends survival in a mouse model of human prion disease. Free Radic Biol Med 45(2):184–192 Bruinsma IB, Bruggink KA, Kinast K (2011) Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 79:2956–2967 Carboni E, Lingor P (2015) Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics 7(3):395–404 Caulfield MP, Bridsall NJ (1998) International Union of Pharmacology XVII classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290 Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A (2015) Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6(4):282–299 Chan SL, Tan EK (2017) Targeting LRRK2 in Parkinson’s disease: an update on recent developments. Expert Opin Ther Targets 21(6):601–610 Chandra A, Johri A, Beal MF (2014) Prospects for neuroprotective therapies in prodromal Huntington’s disease. Mov Disord 29:285–293 Chen JF, Xu K, Petzer JP et al (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143 Cho S, Szeto HH, Kim E, Kim H, Tolhurst AT, Pinto JT (2007) A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem 282:4634–4642 Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. NeuroMol Med 121:1–12 Clarke AR, Jackson GS, Collinge J (2001) The molecular biology of prion propagation. Philos Trans R Soc Lond, Ser B 356:185–195 Colell A, Fernandez A, Fernandez-Checa JC (2009) Mitochondria, cholesterol and amyloid β peptide: a dangerous trio in Alzheimer disease. J Bioenerg Biomembr 41:417–423 Colotta V, Lenzi O, Catarzi D et al (2012) 3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors: molecular modeling and pharmacological studies. Eur J Med Chem 54:470–482 Congdon EE, Krishnaswamy S, Sigurdsson EM (2014) Harnessing the immune system for treatment and detection of tau pathology. J Alzheimers Dis 40:S113–S121 Coraci IS, Husemann J, Berman JW et al (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160(1):101–112 Coric V, Van-Dyck CH, Salloway S, Andreasen N, Brody M, Richter RW et al (2012) Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 69:1430–1440 Cornelis J, Schyf VD (2011) the use of multi-target drugs in the treatment of neurodegenerative diseases. Exp Rev Clin Pharmacol 43:293–298 Cornelissen T, Haddad D, Wauters F, Van-Humbeeck C, Mandemakers W, Koentjoro B (2014) The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Mol Genet 23:5227–5242 Coussee E, De-Smet P, Bogaert E, Coussee E, De-Smet P, Bogaert E, Elens I, Van-Damme P, Willems P, Koopman W, Van-Den-Bosch L, Callewaert G (2011) G37R SOD1 mutant alters mitochondrial complex I activity, Ca2+ uptake and ATP production. Cell Calcium 49:217–225 Cox P, Davis D, Mash D, Metcalf J, Banack S (2016) Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc R Soc B 283(1823):20152397 Cristalli G, Muller CE, Volpini R (2009) Recent developments in adenosine A2A receptor ligands. Handb Exp Pharmacol 193:59–98 Cristóvão AC, Guhathakurta S, Bok E et al (2012) NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. J Neurosci 32(42):14465–14477 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295 D’Andrea MR, Nagele RG (2010) Morphologically distinct types of amyloid plaques point the way to a better understanding of Alzheimer’s disease pathogenesis. Biotech Histochem 85:133–147 Davie BJ, Christopoulos A, Scammells PJ (2013) Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem Neurosci 4(7):1026–1048 Dehay B, Bove J, Rodríguez-Muela N et al (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30:12535–12544 Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW, Merchant KM, Bezard E, Petsko GA (2015) Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14:855–866 De-Lera-Ruiz M, Lim YH, Zheng J (2013) Adenosine A2A receptor as a drug discovery target. J Med Chem 57(9):3623–3650 DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti- Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβburden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855 Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26(35):9057–9068 De-Villemeur TB (2013) Creutzfeldt-Jakob disease Handbook of clinical neurology. Elsevier 112:1191–1193 Di-Maio R, Barrett PJ, Hoffman EK et al (2016) α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8(342):342ra78 Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61 Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci 5:452–457 Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ (2003) Study CWP: tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60(4):601–605 Doens D, Fernández PL (2014) Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation 11:48 Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S et al (2005) Phenotypic and biochemical analyses of BACE1-and BACE2-deficient mice. J Biol Chem 280:30797–30806 Dominy JE, Puigserver P (2013) Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol 5:1–18 Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S et al (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. New Engl J Med 369:341–350 Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Transl Neuro 7(1):2. https://doi.org/10.1186/s40035-018-0107-y Durcan TM, Tang MY, Pérusse JR et al (2014) USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 33:e201489729 Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z et al (2011) Distinct roles in vivo for the ubiquitin–proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J Neurosci 3141:14508–14520 Ebrahimi-Fakhari D, Saidi LJ, Wahlster L (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun 1:79. https://doi.org/10.1186/2051-5960-1-79 Engelender S (2008) Ubiquitination of alpha synuclein and autophagy in Parkinson’s disease. Autophagy 4:372–374 Erin E, Congdon Einar MS (2018) Tau-targeting therapies for Alzheimer disease. Neurology. https://doi.org/10.1038/s41582-018-0013-z Espinoza-Moraga M, Caballero J, Gaube F, Winckler T, Santos LS (2012) 1-Benzyl-1, 2, 3, 4-tetrahydro-b-carboline as channel blocker of N-methyl-D-aspartate receptors. Chem Biol Drug Des 79:594–599 Ezza HSA, Khadrawy YA (2014) Glutamate excitotoxicity and neurodegeneration. J Mol Genet Med 8:4 Fallon L, Belanger CM, Corera AT et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI 3 K-Akt signalling. Nat Cell Biol 8:834–842 Fantini J, Yahi N (2015) Brain lipids in synaptic function and neurological disease: clues to innovative therapeutic strategies for brain disorders. Academic Press, London Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-ramos M (2012) α-Synuclein expression is modulated at the translational level by iron. NeuroReport 23(9):576–580 Fischer D, Mukrasch MD, Biernat J, Bibow S, Blackledge M, Griesinger C et al (2009) Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry 48:10047–10055 Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann N Y Acad Sci 991:111–119 Fitzgerald DP, Emerson DL, Qian Y et al (2012) TPI-287, a new taxane family member reduces the brain metastatic colonization of breast cancer cells. Mol Cancer Ther 11:1959–1967 Folch J, Ettcheto M, Petrov D, Abad S, Pedros I, Marin M et al (2018) Review of the advances in treatment for Alzheimer disease: strategies for combating β-amyloid protein. Neurologia 33:47–58 Foley TD (1997) 5-HPETE is a potent inhibitor of neuronal Na K-ATPase activity. Biochem Biophys Res Commun 235(2):374–376 Foster DJ, Choi DL, Conn PJ, Rook JM (2014) Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat 10:183. https://doi.org/10.2147/NDTS55104 Francesco P, Madia L, Giancarlo L, Bruno PI (2019) A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. https://doi.org/10.1038/s41582-018-0116-6 Freixes M, Rodriguez A, Dalf´o E, Ferrer I (2006) Oxidation glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol Aging 27:1807–1815 Fuller JP, Stavenhagen JB, Christensen S, Kartberg F, Glennie MJ, Teeling JL (2015) Comparing the efficacy and neuroinflammatory potential of three anti- Aβantibodies. Acta Neuropathol 130:699–711 Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM et al (1996) Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a c-terminal heparin-binding domain. J Neurochem 67:1882–1896 Gagliardi RJ (2000) Neuroprotection, excitotoxicity and NMDA antagonists. Arq Neuro-Psiquiatr 58:583–588 Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59:449–458 Gauczynski S, Nikles D, El-Gogo S et al (2006) The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes. J Infect Dis 194:702–709 Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH et al (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. The Lancet 388(10062):2873–2884 Gegg ME, Cooper JM, Schapira AH, Taanman JW (2009) Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE 4:e4756 Giacobini E, Gold G (2013) Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol 9:677–686 Gill SS, Patel NK, Hotton GR et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595 Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Models Mech 10:499–502 Gitto R, De-Luca L, Ferro S et al (2008) Computational studies to discover a new NR2B/NMDA receptor antagonist and evaluation of pharmacological profile. Chem Med Chem 3(10):1539–1548 Gitto R, De-Luca L, Ferro S et al (2014) Synthesis, modeling and biological characterization of 3-substituted-1H-indoles as ligands of GluN2B-containing Nmethyl- d-aspartate receptors. Bioorg Med Chem 22:1040–1048 Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L (2013) γ-Secretase inhibitors and modulators. Biochim Biophys Acta BBA-Biomembr 1828:2898–2907 Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME (2006) Suppression of prion protein in live-stock by RNA interference. Proc Natl Acad Sci 103:5285–5290 Golpich M, Rahmani B, Ibrahim NMAA et al (2015) Preconditioning as a potential strategy for the prevention of Parkinson’s disease. Mol Neurobiol 51:313–330 Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15:2321–2328 Gong CX, Shaikh S, Grundke-Iqbal I, Iqbal K (1996) Inhibition of protein phosphatase-2B calcineurin activity towards Alzheimer abnormally phosphorylated τ by neuroleptics. Brain Res 41:95–102 Gravitz L (2011) Drugs: a tangled web of targets. Nature 475(7355):S9–S11. https://doi.org/10.1038/475S9a Green RC, Schneider LS, Amato DA, Beelen AP, Wilcock G, Swabb EA et al (2009) Tarenflurbil Phase 3 Study Group: effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302:2557–2564 Guttman M, Boileau I, Warsh J, Saint-Cyr JA, Ginovart N, McCluskey T, Houle S, Wilson A, Mundo E, Rusjan P et al (2007) Brain serotonin transporter binding in nondepressed patients with Parkinson’s disease. Eur J Neurol 14(5):523–528 Haapaniemi TH, Ahonen A, Torniainen P, Sotaniemi KA, Myllyla VV (2001) [123I]beta-CIT SPECT demonstrates decreased brain dopamine and serotonin transporter levels in untreated parkinsonian patients. Mov Disord 16(1):124–130 Hallock P, Michael A, Thomas (2012) Integrating the Alzheimer’s disease proteome and transcriptome: a comprehensive network model of a complex disease. J Integr Biol 16:37–49 Hamaguchi T, Ono K, Yamada M (2010) Review: curcumin and Alzheimer’s disease. CNS Neurosci Ther 16:285–297 Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119 Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide 1-40 in cultured hippocampal neurons. Exp Neurol 131:193–202 Hart FU, Bracher A, Hayer-Hart M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332 Hashimoto M, Rockenstei E, Mante M, Crews L, Bar-On P, Gage FH et al (2004) An anti-aggregation gene therapy strategy for lewy body disease utilizing β-synuclein lentivirus in a transgenic model. Gene Ther 11:1713–1723 Hastings TG (2009) The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr 41(6):469–472 Haugarvoll K, Rademakers R, Kachergus JM et al (2008) LRRK2 R1441C Parkinsonism is clinically similar to sporadic Parkinson disease. Neurology 70:1456–1460 He DY, McGough NN, Ravindranathan A et al (2005) Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J Neurosci 25:619–628 Healy DG, Falchi M, O’Sullivan SS et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7:583–590 Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. JAMA Neurol 60(8):1119–1122 Hedstrom KL, Murtie JC, Albers K, Calcutt NA, Corfas G (2014) Treating small fiber neuropathy by topical application of a small molecule modulator of ligand-induced GFRα/RET receptor signalling. Proc Natl Acad Sci 111(6):2325–2330 Heemels MT (2016) Neurodegenerative diseases. Nature 539(7628):179 Hershko A, Ciechanover A (1998) The ubiquitin system. Ann Rev Biochem 67:425–479 Herskovits AZ, Guarente L (2013) Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 23:746–758 Hibiki K, Giovanni M (2017) Proteinopathies and OXP HOS dysfunction in neurodegenerative diseases. J Cell Biol 216:3917–3929 Holtcamp W (2012) The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Health Perspect 120(3):A110–A116 Hopkins CR (2011) ACS chemical neuroscience molecule spotlight on ELND006: another γ-secretase inhibitor fails in the clinic. ACS Chem Neurosci 2:279–280 Hou Y, Li S, Wu M et al (2016) Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 310:F547–F559 Hsieh YL, Kan HW, Chiang H, Lee YC, Hsieh ST (2018) Distinct TrkA and Ret modulated negative and positive neuropathic behaviors in a mouse model of resiniferatoxin-induced small fiber neuropathy. Exp Neurol 300:87–99 Hu H, Li M (2016) Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun 478(1):174–180 Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD et al (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525 Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, Frautschy SA (2015) Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother 15:629–637 Hung SY, Fu WM (2017) Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 24:47 Huot P, Sgambato-Faure V, Fox SH, McCreary AC (2017) Serotonergic approaches in Parkinson’s disease: translational perspectives, an update. ACS Chem Neurosci 8(5):973–986 Infante J, Prieto C, Sierra M et al (2016) Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease. Neurobiol Aging 38(214):e1–e5 Iqbal K, Alonso ADC, Chen S, Chohan MO, El-Akkad E, Gong CX et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta BBA Mol Basis Dis 1739:198–210 Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW (2003) Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. J Neuropathol Exp Neurol 62:389–397 Jacobsen JS, Reinhart P, Pangalos MN (2005) Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer’s disease. NeuroRx 2:612–626 Jacobsen H, Ozmen L, Caruso A, Narquizian R, Hilpert H, Jacobsen B, Terwel D, Tanghe A, Bohrmann B (2014) Combined treatment with a BACE inhibitor and anti- Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. J Neurosci 34:11621–11630 Jana S, Sinha M, Chanda D et al (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1812:663–673 Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:161S–170S Johnson GVW, Hartigan JA (1999) Tau protein in normal and Alzheimer’s disease brain: an update. J Alzheimer’s Dis 1:329–351 Johnson BN, Bergera AK, Cortesea GP, LaVoie MJ (2012) The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. PNAS 109(16):6283–6288 Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630 Kadowaki H, Nishitoh H, Urano F et al (2005a) Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12(1):19–24 Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K et al (2005b) Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12:19–24 Kahle PJ, Haass C (2004) How does parkin ligate ubiquitin to Parkinson’s disease? EMBO Rep 5:681–685 Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912 Kanfi Y, Naiman S, Amir G et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221 Kastanenka KV, Bussiere T, Shakerdge N, Qian F, Weinreb PH, Rhodes K, Bacskai BJ (2016) Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. J Neurosci 36:12549–12558 Keshet GI, Ovadia H, Taraboulos A, Gabizon R (1999) Scrapie-infected mice and PrP knockout mice share abnormal localization and activity of neuronal nitric oxide synthase. J Neurochem 72:1224–1231 Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287:19440–19451 Khan MT, Orhan I, Senol FS et al (2009) Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem Biol Interact 181:383–389 Kiaei M (2008) Peroxisome proliferator-activated receptor gamma in amyotrophic lateral sclerosis and Huntington’s disease. PPAR Res 8:1–8 Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608 Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces α-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502 Kokubo H, Kayed R, Glabe CG, Staufenbiel M, Saido TC, Iwata N et al (2009) Amyloid beta annular protofibrils in cell processes and synapses accumulate with aging and Alzheimer-associated genetic modification. Int J Alzheimer’s Dis 2009:689285. https://doi.org/10.4061/2009/689285 Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci 874:1561–1565 Koren SA, Hamm MJ, Meier SE, Weiss BE, Nation GK, Chishti EA et al (2019) Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol. https://doi.org/10.1007/s00401-019-01970-9 Krueger BA, Weil T, Schneider G (2009) Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists. J Comput Aided Mol Des 23(12):869 Kumar A, Nisha CM, Silakari C et al (2016) Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc 115(1):3–10 Kuzuhara S (2010) Treatment strategy of Alzheimer disease: pause of clinical trials of Aβ vaccine and next steps. Brain Nerve 62:659–666 Lang AE (2010) Clinical trials of disease modifying therapies for neurodegenerative diseases: the challenges and the future. Nat Med 1611:1223–1226 Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48 Lazarou M, Sliter DA, LA Kane JL et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314 Leong SL, Cappai R, Barnham KJ, Pham CL (2009) Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res 34(10):1838–1846 Leucht C, Vana K, Renner-Muller I et al (2004) Knock-down of the 37-kDa laminin receptor in mouse brain by transgenic expression of specific antisense LRP RNA. Transgenic Res 13:81–85 Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88:673–728 Lipton SA (2005) The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2:155–165 Liraz O, Boehm-Cagan A, Michaelson D (2013) ApoE4 induces Aβ42, tau and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol Neurodegener 8:16 Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22:1942–1950 Liu C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118 Liu AK, Chang RC, Pearce RK, Gentleman SM (2015) Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol 129(4):527–540 Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, Basun H, Lannfelt L (2016) Safety and tolerability of BAN2401— a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res Ther 8:14 Lozano AM, Lang AE, Hutchison WD, Dostrovsky JO (1998) New developments in understanding the etiology of Parkinson’s disease and in its treatment. Curr Opin Neurobiol 8:783–790 Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862 Luk KC, Mills IP, Trojanowski JQ, Lee VM (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625 Mackenzie G, Will R (2017) Creutzfeldt-Jakob disease: recent developments. F1000 Res 6:2053 MacLeod R, Hillert EK, Cameron RT, Baillie GS (2015) The role and therapeutic targeting of α, β and γ secretase in Alzheimer’s disease. Future Sci. https://doi.org/10.4155/fso159 Maiti P, Gregg LC, McDonald MP (2016) MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function. Behav Brain Res 298(Pt B):192–201 Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP (2010) Mitochondria targeted antioxidants protect against amyloid-b toxicity in Alzheimer’s disease neurons. J Alzheimer’s Dis 20:609–631 Manuelidis L (2013) Infectious particles, stress, and induced prion amyloids: a unifying perspective. Virulence 4:373–383 Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D et al (2008) Etazolate, a neuroprotective drug linking GABAA receptor pharmacology to amyloid precursor protein processing. J Neurochem 106:392–404 Marina SG, Oleg SG (2013) The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: a mini review. J Genet Syndr Gene Ther 4(2):128 Marina SG, Arseniy S, Weijun C, Craig M, Layla FS, Max S, Jonathan HL, Alfred SL, Nicholas M, Oleg SG (2012) Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20:1327–1337 Masliah E, Rockenstein E, Mante M et al (2011) Passive immunization reduces behavioural and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. PLoS ONE 6:e19338 Mbazima V, Da-Costa-Dias B, Omar A, Jovanovic K, Weiss SF (2010) Interactions between PrP (c) and other ligands with the 37-kDa/67-kDa laminin receptor. Front Biosci 3667:1150–1163 McBride HM (2008) Parkin mitochondria in the autophagosome. J Cell Biol 183:757–759 McLean PJ, Kawamata H, Shariff S et al (2002a) Torsin-A and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. J Neurochem 83:846–854 McLean S, Naish R, Reed L, Urry S, Vicenzino B (2002b) A pilot study of the manual force levels required to produce manipulation induced hypoalgesia. Clin Biomech 17:304–308 Mehta M, Adem A, Sabbagh M (2012) New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimer’s Dis. https://doi.org/10.1155/2012/728983 Melancon BJ, Tarr JC, Panarese JD, Wood MR, Lindsley CW (2013) Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer’s disease. Drug Dis Today 18(23–24):1185–1199 Min SW, Sohn PD, Cho SH, Swanson RA, Gan L (2013) Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci 5:1–9 Mojtaba G, Elham A, Zahurin M, Raymond AA, Norlinah MI, Abolhassan A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis treatment CNS. Neurosci Therapeut 23:5–22 Mondragón-Rodríguez S, Perry G, Zhu X, Boehm J (2012) Amyloid beta and tau proteins as therapeutic targets for Alzheimer’s disease treatment: rethinking the current strategy. Int J Alzheimer’s Dis. https://doi.org/10.1155/2012/630182 Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR (2009) An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis 16:741–761 Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, Smith MA (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220 Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:427–1438 Muchowski PJ, Wacker JL (2005a) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22 Muchowski PJ, Wacker JL (2005b) Modulation of neurodegeneration by molecular chaperones. Neuroscience 6(1):11 Mudher A, Lovestone S (2002) Alzheimer’s disease do tauists and baptists finally shake hands? Trends Neurosci 25:22–26 Murray ED, Buttner EA, Price BH (2012) Depression and psychosis in neurological practice. In: Daroff R, Fenichel G, Jankovic J, Mazziotta J (eds) Bradley’s neurology in clinical practice, 6th edn. Elsevier/Saunders, Philadelphia Narendra D, Tanaka A, Suen DF et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803 Niforou K, Cheimonidou C, Trougakos IP (2014) Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2:323–332 Nikolaev A (2009) APP binds DR6 to cause axon pruning and neuron death via distinct caspases. Nat 457:981–989 Onyango IG, Lu JH, Rodova M, Lezi E, Crafter AB, Swerdlow RH (2010) Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta 1802:228–234 Osswald G (2018) BioArctic announces positive topline results of BAN2401 Phase 2b at 18 months in early Alzheimer’s disease. BioArctic Press Release, Stockholm Outeiro TF, Kontopoulos E, Altmann SM et al (2007) Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519 Ovadia H, Rosenmann H, Shezen E, Halimi M, Ofran I, Gabizon R (1996) Effect of scrapie infection on the activity of neuronal nitricoxide synthase in brain and neuroblastoma cells. J Biol Chem 271:16856–16861 Pajares M, Jiménez-Moreno N, Dias IH et al (2015) Redox control of protein degradation. Redox Biol 6:409–420 Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164:541–551 Panegyres PK, Armari E (2013) Therapies for human prion diseases. Am J Neurodegen Dis 2:176–186 Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C, Barulli MR, Bellomo A, Pilotto A, Daniele A (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. Biomed Res Int 2016:3245935 Parson CG, Danysz W, Dekundy A, Pulte I (2013) Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res 24:358–369 Peden AH, Head MW, Diane LR, Jeanne EB, James WI (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364(9433):527–529 Peoc’h K, Manivet P, Beaudry P et al (2000) Identification of three novel mutations E196 K, V203I, E211Q in the prion protein gene PRNP in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Human Mutat 15(5):482 Petersen RB, Siedlak SL, Lee HG et al (2005) Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathol 110:232–238 Petri S, Kiaei M, Damiano M et al (2006) Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem 98:1141–1148 Pfeifer A, Eigenbrod S, Al-Khadra SM et al (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-Infected mice. J Clin Invest 116:3204–3210 Pflanz H, Vana K, Mitteregger G et al (2009) Microinjection of lentiviral vectors expressing small interfering RNAs directed against laminin receptor precursor mRNA prolongs the pre-clinical phase in scrapie-infected mice. J Gen Virol 90:269–274 Pickhardt M, Gazova Z, Von-Bergen M, Khlistunova I, Wang Y, Hascher A, Mandelkow EM et al (2005) Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J Biol Chem 280:3628–3635 Pickrell AM, Youle RJ (2015) The roles of PINK1 parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273 Pietri M, Dakowski C, Hannaoui S, Alleaume-Butaux A, Hernandez-Rapp J, Ragagnin A et al (2013) PDK1 decreases TACE-mediated [alpha]-secretase activity and promotes disease progression in prion and Alzheimer’s diseases. Nat Med 19:1124–1131 Pinna A (2014) Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28:455–474 Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047 Protter D, Lang C, Cooper AA (2012) α-Synuclein and mitochondrial dysfunction: a pathogenic partnership in Parkinson’s disease. Parkinson’s Dis 2012:829207. https://doi.org/10.1155/2012/829207 Prusiner SB, Scott MR, DeArmond SJ, Cohen FE (1998) Prion protein biology. Cell 93:337–348 Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS (2002) Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83(4):973–983 Qin B, Cartier L, Dubois-dauphin M, Li B, Serrander L, Krause KH (2006) A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 27(11):1577–1587 Rankin CA, Sun Q, Gamblin TC (2005) Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation. Mol Brain Res 138:84–93 Rascol O, Brooks DJ, Melamed E et al (2005) LARGO Study Group Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations LARGO, Lasting effect in Adjunct therapy with Rasagiline given once daily, study: a randomised, double-blind, parallel-group trial. Lancet 365:947–954 Reimann RR, Sonati T, Hornemann S et al (2016) Differential toxicity of antibodies to the prion protein. PLoS Pathog 28:e1005401 Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE et al (2010) 11 C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372 Rogers MB (2018) To block tau’s proteopathic spread, antibody must attack its mid-region. Alzforum. https://www.alzforum.org/news/conference-coverage/blocktaus-proteopathic-spread-antibody-ustattack-its-mid-region Roy KK, Tota S, Tripathi T, Chander S, Nath C, Saxena AK (2012) Lead optimization studies towards the discovery of novel carbamates as potent AChE inhibitors for the potential treatment of Alzheimer’s disease. Bioorg Med Chem 20:6313–6320 Rubenstein R (2017) Possible causes of Alzheimer’s disease related Amyloid-β plaques and neurofibrillary tangles. Sci J Lander Coll Arts Sci 10(2):3 Sabbagh MN (2009) Drug development for Alzheimer’s disease: where are we now and where are we headed? Am J Geriatric Pharmacother 7:167–185 Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New Engl J Med 370:322–333 Samii A, Nutt JG, Ransom BR (2004) Parkinson’s Dis. Lancet 363:1183–1193 Sanchez MG, Morissette M, Di Paolo T (2013) Estradiol and brain serotonin reuptake transporter in long-term ovariectomized parkinsonian monkeys. Prog Neuro-Psychopharmacol Biol Psychiatry 45:170–177 Sattar H (2013) Fundamentals of pathology. Pathoma LLC; 2nd edition 2013 Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638 Scarpulla RC (2011) Metabolic control of mitochondrial Biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813:1269–1278 Scott NK (2013) Infection prevention: review and update for neurodiagnostic technologists. Neurodiag J 534:271–288 Sharma J, Johnston MV, Hossain MA (2014) Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci 15:1–14 Shelat PB, Chalimoniuk M, Wang JH et al (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106(1):45–55 Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B et al (2009) Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Bioorg Med Chem 17:6692–6698 Shimura H, Hattori N, Kubo SI et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305 Shin-ichiro K, Taku H, Masashi T, Nobutaka H (2013) Can parkin be a target for future treatment of Parkinson’s disease? Expert Opin Ther Targets 17:10 Sidorova YA, Saarma M (2016) Glial cell line-derived neurotrophic factor family ligands and their therapeutic potential. Mol Biol 50(4):521–531 Sidorova YA, Bespalov MM, Wong AWTO et al (2017) A novel small molecule GDNF receptor RET agonist, BT13, promotes neurite growth from sensory neurons in vitro and attenuates experimental neuropathy in the rat. Front Pharmacol 8:365 Simonovitch S, Schmukler E, Pinkas-Kramarski R et al (2016) Impaired autophagy in APOE4 astrocytes. J Alzheimer’s Dis JAD 51(3):915–927 Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222 Smith DG, Cappa R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta 1768(8):1976–1990 Snead D, Eliezer D (2014) Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol 23:292–313 Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205 Sorensen EB, Conner SD (2010) γ-secretase dependent cleavage initiates notch signalling from the plasma membrane. Trafficking 11:1234–1245 Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139:318–324 Szeto HH (2008) Cell-permeable, mitochondrial-targeted, peptide antioxidants.Drug addiction. Springer, New York, pp 535–546 Tagliavini F, Pilleri G (1983) Basal nucleus of Meynert, a neuropathological study in Alzheimer’s disease, simple senile dementia, Pick’s disease and Huntington’s chorea. J Neurol Sci 62(1–3):243–260 Tamgüney G, Giles K, Glidden DV, Lessard P, Wille H, Tremblay P (2008) Genes contributing to prion pathogenesis. J Gen Virol 89:1777–1788 Tan Z, Shi L, Schreiber SS (2009a) Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity. Open Neurosci J 3:26–34 Tan Z, Shi L, Schreiber SS (2009b) Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity. Open Neurosci J3:26–34 Tan SK, Hartung H, Sharp T, Temel Y (2011) Serotonin-dependent depression in Parkinson’s disease: a role for the subthalamic nucleus? Neuropharmacol 61(3):387–399 Tariot PN, Lopera F, Langbaum JB et al (2018) The alzheimer’s prevention initiative autosomal- dominant alzheimer’s disease trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal- dominant Alzheimer’s disease, including a placebo- treated noncarrier cohort. Alzheimers Dement 4:150–160 Taymansa JM, Greggio E (2016) LRRK2 Kinase Inhibition as a therapeutic strategy for Parkinson’s disease, where do we stand. Curr Neuropharmacol 14:214–225 Tilly G, Chapuis J, Vilette D, Laude H, Vilotte JL (2003) Efficient and specific downregulation of prion protein expression by RNAi. Biochem Biophys Res Commun 305:548–551 Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurol 62:1984–1989 Tokugawa K, Yamamoto K, Nishiguchi M et al (2003) XIB4035, a novel nonpeptidyl small molecule agonist for GFRα-1. Neurochem Int 42(1):81–86 Ultsch M, Li B, Maurer T, Mathieu M, Adolfsson O, Muhs A, Pfeifer A, Pihlgren M, Bainbridge TW, Reichelt M, Ernst JA (2016) Structure of crenezumab complex with Aβ shows loss of β- hairpin. Sci Rep 6:39374 Urwin PJ, Mackenzie JM, Llewelyn CA, Will RG, Hewitt PE (2016) Creutzfeldt-Jakob disease and blood transfusion: updated results of the UK transfusion medicine epidemiology review study. Vox Sang 110(4):310–316 Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160 Van-Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci 107:13888–13893 Varadaraju KR, Kumar JR, Mallesha L et al (2013) Virtual screening and biological evaluation of piperazine derivatives as human acetylcholinesterase inhibitors. Int J Alzheimers Dis. https://doi.org/10.1155/2013/653962 Vella LJ, Cappai R (2012) Identification of a novel amyloid precursor protein processing pathway that generates secreted N-terminal fragments. FASEB J 267:2930–2940 Vellas B, Sol O, Snyder PJ, Ousset PJ, Haddad R, Maurin M et al (2011) EHT0202 in Alzheimer’s disease: a 3-month, randomized, placebo-controlled, double-blind study. Curr Alzheimer Res 8:203–212 Wang X, Su BO, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103 Wang A, Das P, Switzer RC, Golde TE, Jankowsky JL (2011) Robust amyloid clearance in a mouse model of Alzheimer’s disease provides novel insights into the mechanism of amyloid-β immunotherapy. J Neurosci 31:4124–4136 Ward HJ, Everington D, Cousens SN, Smith-Bathgate B, Leitch M, Cooper S, Heath C, Knight RS, Smith PG, Will RG (2006) Risk factors for variant Creutzfeldt-Jakob disease: a case-control study. Ann Neurol 59(1):111–120 West T (2016) Safety, tolerability and pharmacokinetics of ABBV-8E12, a humanized anti-tau monoclonal antibody, in a Phase I, single ascending dose, placebo controlled study in subjects with progressive supranuclear palsy. J Prev Alzheimers Dis 3:285 White MD, Mallucci GR (2009) Therapy for prion diseases Insights from the use of RNA interference. Prion 3:121–128 Will RG (2003) Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br Med Bull 66:255–265 Will RG, Zeidler M, Stewart GE, Macleod MA, Ironside JW, Cousens SN, Mackenzie J, Estibeiro K, Green AJ, Knight RS (2000) Diagnosis of new variant Creutzfeldt–Jakob disease. Ann Neurol 47(5):575–582 Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM (2012) Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double- blind, placebo- controlled first- in-human study. Lancet Neurol 11:597–604 Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 93:11213–11218 Wolfe MS (2012) γ-Secretase inhibitors and modulators for Alzheimer’s disease. J Neurochem 1(120):89–98 Wong HK, Sakurai T, Oyama F, Kaneko K, Wada K, Miyazaki H et al (2005) Beta Subunits of voltage-gated sodium channels are novel substrates of beta-site amyloid precursor protein-cleaving enzyme BACE1 and gamma-secretase. J Biol Chem 280:23009–23017 Wu Z, Huang X, Feng Y et al (2006) Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1 alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci 103:14379–14384 Xiang W, Menges S, Schlachetzki JC et al (2015) Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity. Mol Neurodegener 10:8 Yanamandra K, Kfoury N, Jiang H et al (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–414 Yanamandra K, Jiang H, Mahan TE, Maloney SE, Wozniak DF, Diamond MI, Holtzman DM (2015) Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol 2:278–288 Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF (2009) Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal 11:2095–2104 Yin W, Signore AP, Iwai M, Cao GD, Gao YQ, Chen J (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39:3057–3063 Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14 Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903 Zhao J, Nussinov R, Ma B (2017) Mechanisms of recognition of amyloid- β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 292:18325–18343 Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121:799–817 Zourlidou A, Payne-Smith MD, Latchman DS (2004) HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 88:1439–144810