Elliptical pillars for the thermal performance enhancement of micro-structured evaporators

Goksel Yuncu1,2,3, Yigit Akkus4, Zafer Dursunkaya2
1ASELSAN Inc., 06200 Ankara, Turkey
2Department of Mechanical Engineering, Middle East Technical University, 06800, Ankara, Turkey
3GE Aerospace, Marmara Technology Center, 41471 Kocaeli, Turkey
4Ericsson AB, 164 40 Kista, Sweden

Tài liệu tham khảo

Knickerbocker, 2008, Three-dimensional silicon integration, IBM J. Res. Dev., 52, 553, 10.1147/JRD.2008.5388564 Black, 2006, Die stacking (3d) microarchitecture, IEEE Micro., 469 Bar-Cohen, 2021, The icecool fundamentals effort on evaporative cooling of microelectronics, IEEE Trans. Compon. Packaging Manuf. Technol., 11, 1546, 10.1109/TCPMT.2021.3111114 Schelling, 2005, Managing heat for electronics, Mater. Today, 8, 30, 10.1016/S1369-7021(05)70935-4 Viswanath, 2000, Thermal performance challenges from silicon to systems, Intel. Technol. J., Q3, 1 Moore, 2014, Emerging challenges and materials for thermal management of electronics, Mater. Today, 17, 163, 10.1016/j.mattod.2014.04.003 Agostini, 2007, State of the art of high heat flux cooling technologies, Heat Transf. Eng., 28, 258, 10.1080/01457630601117799 Kercher, 2003, Microjet cooling devices for thermal management of electronics, IEEE Trans. Compon. Packag. Manuf., 26, 359, 10.1109/TCAPT.2003.815116 Liang, 2017, Review of spray cooling-part 1: single-phase and nucleate boiling regimes, and critical heat flux, Int. J. Heat Mass Transf., 115, 1174, 10.1016/j.ijheatmasstransfer.2017.06.029 Taylor, 2008, Comprehensive system-level optimization of thermoelectric devices for electronic cooling applications, IEEE Trans. Compon. Packaging Manuf. Technol., 31, 23, 10.1109/TCAPT.2007.906333 Zhang, 2010, Analysis of thermoelectric cooler performance for high power electronic packages, Appl. Therm. Eng., 30, 561, 10.1016/j.applthermaleng.2009.10.020 Karayiannis, 2017, Flow boiling in microchannels: fundamentals and applications, Appl. Therm. Eng., 115, 1372, 10.1016/j.applthermaleng.2016.08.063 Faghri, 2012, Review and advances in heat pipe science and technology, ASME J. Heat Transfer, 134, 123001, 10.1115/1.4007407 Weibel, 2013, Recent advances in vapor chamber transport characterization for high-heat-flux applications, Adv. Heat Tran., 45, 209, 10.1016/B978-0-12-407819-2.00004-9 Vaartstra, 2019, Simultaneous prediction of dryout heat flux and local temperature for thin film evaporation in micropillar wicks, Int. J. Heat Mass Transf., 136, 170, 10.1016/j.ijheatmasstransfer.2019.02.074 Vaartstra, 2020, Capillary-fed, thin film evaporation devices, J. Appl. Phys., 128, 130901, 10.1063/5.0021674 Movaghgharnezhad, 2021, Advanced micro−/nanostructured wicks for passive phase-change cooling systems, Nanoscale Microscale Thermophys. Eng., 25, 116, 10.1080/15567265.2021.1903631 Ranjan, 2012, Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders, Int. J. Heat Mass Transf., 55, 586, 10.1016/j.ijheatmasstransfer.2011.10.053 Coso, 2012, Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes, J. Heat Transf., 134, 10.1115/1.4006106 Ravi, 2014, Monoporous micropillar wick structures, i-mass transport characteristics, Appl. Therm. Eng., 73, 1371, 10.1016/j.applthermaleng.2014.04.057 Adera, 2016, Design of micropillar wicks for thin-film evaporation, Int. J. Heat Mass Transf., 101, 280, 10.1016/j.ijheatmasstransfer.2016.04.107 Wei, 2018, Optimization and thermal characterization of uniform silicon micropillar based evaporators, Int. J. Heat Mass Transf., 127, 51, 10.1016/j.ijheatmasstransfer.2018.06.128 Gebart, 1992, Permeability of unidirectional reinforcements for rtm, J. Compos. Mater., 26, 1100, 10.1177/002199839202600802 Drummond, 1984, Laminar viscous flow through regular arrays of parallel solid cylinders, Int. J. Multiphase Flow, 10, 515, 10.1016/0301-9322(84)90079-X Sangani, 1982, Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiphase Flow, 8, 193, 10.1016/0301-9322(82)90029-5 Wang, 2003, Analytical model for capillary evaporation limitation in thin porous layers, J. Thermophys. Heat Transf., 17, 145, 10.2514/2.6769 Horner, 2014, Monoporous micropillar wick structures, ii- optimization & theoretical limits, Appl. Therm. Eng., 73, 1378, 10.1016/j.applthermaleng.2014.04.055 Nam, 2010, Fabrication and characterization of the capillary performance of superhydrophilic cu micropost arrays, J. Microelectromech. Syst., 19, 581, 10.1109/JMEMS.2010.2043922 Xiao, 2010, Prediction and optimization of liquid propagation in micropillar arrays, Langmuir, 26, 15070, 10.1021/la102645u Byon, 2011, The effect of meniscus on the permeability of micro-post arrays, J. Micromech. Microeng., 21, 115011, 10.1088/0960-1317/21/11/115011 Brakke, 1992, The surface evolver, Exp. Math., 1, 141, 10.1080/10586458.1992.10504253 Zhu, 2016, Prediction and characterization of dry-out heat flux in micropillar wick structures, Langmuir, 32, 1920, 10.1021/acs.langmuir.5b04502 Yuncu, 2023, Interplay of capillary and marangoni flows in micropillar evaporation, Int. J. Therm. Sci., 184, 107893, 10.1016/j.ijthermalsci.2022.107893 Hale, 2014, Optimization of capillary flow through square micropillar arrays, Int. J. Multiphase Flow, 58, 39, 10.1016/j.ijmultiphaseflow.2013.08.003 Farokhnia, 2016, Rational micro/nanostructuring for thin-film evaporation, J. Phys. Chem. C, 120, 8742, 10.1021/acs.jpcc.6b01362 Montazeri, 2018, Microscopic analysis of thin-film evaporation on spherical pore surfaces, Int. J. Heat Mass Transf., 122, 59, 10.1016/j.ijheatmasstransfer.2018.01.002 Bongarala, 2022, A figure of merit to characterize the efficacy of evaporation from porous microstructured surfaces, Int. J. Heat Mass Transf., 182, 121964, 10.1016/j.ijheatmasstransfer.2021.121964 Somasundaram, 2018, Thermal design optimization of evaporator micropillar wicks, Int. J. Therm. Sci., 134, 179, 10.1016/j.ijthermalsci.2018.07.036 North, 2005, Optimization of heat pipe thermal transport using axially graded capillary wick structures, In ASME Int. Mech. Eng. Congr. Expo., 42215, 855 Ravi, 2016, Physics of fluid transport in hybrid biporous capillary wicking microstructures, Langmuir, 32, 8289, 10.1021/acs.langmuir.6b01611 Saygan, 2022, Capillary boosting for enhanced heat pipe performance through bifurcation of grooves: numerical assessment and experimental validation, Int. Commun. Heat Mass, 137, 106162, 10.1016/j.icheatmasstransfer.2022.106162 Deshmukh, 2013, Thermal performance of elliptical pin fin heat sink under combined natural and forced convection, Exp. Thermal Fluid Sci., 50, 61, 10.1016/j.expthermflusci.2013.05.005 Ates, 2023, Flow boiling of dielectric fluid hfe - 7000 in a minichannel with pin fin structured surfaces, Appl. Therm. Eng., 223, 120045, 10.1016/j.applthermaleng.2023.120045 Rajalingam, 2021, Effect of shape and arrangement of micro-structures in a microchannel heat sink on the thermo-hydraulic performance, Appl. Therm. Eng., 190, 116755, 10.1016/j.applthermaleng.2021.116755 Yuncu, 2023, Elliptic micropillar wick evaporators for thermal management of high flux electronics, 1 COMSOL Multiphysics ® v. 5.6. www.comsol.com. COMSOL AB, Stockholm, Sweden. Carey, 1992 Akkus, 2021, Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup, Nanosc. Microsc. Therm., 25, 25, 10.1080/15567265.2020.1861139