Elliptic genera of homogeneous spin manifolds and theta functions identities
Tóm tắt
By Witten rigidity theorem and the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula, the elliptic genus of a homogeneous spin manifold G/H can be expressed as a sum of theta functions quotients over the Weyl group of G. Consequently, we obtain several classes of combinatorial identities of theta functions.
Tài liệu tham khảo
Witten, E., The index of the Dirac operator in loop space, Elliptic Curves and Modular Forms in Algebraic Topology (ed. Landweber P. S.), SLNM 1326, Berlin: Springer, 161–181.
Landweber, P. S., Elliptic genera: an introduction overview, Elliptic Curves and Modular Forms in Algebraic Topology (ed. Landweber P. S.), SLNM 1326, Berlin: Springer, 1–10.
Ochanine, S., Genres elliptiques equivariants, Elliptic Curves and Modular Forms in Algebraic Topology (ed. Landweber P. S.), SLNM 1326, Berlin: Springer, 107–123.
Landweber, P. S., Stong, R. E., Circle actions on spin manifolds and characteristic numbers, Topology, 1988, 27: 145–161.
Taubes, C., S1-actions and elliptic genera, Comm. Math. Phys, 1989, 122: 455–526.
Lerche, W., Nilsson, B., Schellekens, A., Warner, N., Anomaly cancelling terms from the elliptic genera, Nucl. Phys. B, 1986, 299: 91–116.
Schellekens, A., Warner, N., Anomalies and modular invariance in string theory, Phys. Lett. B, 1986, 177(3–4): 317–323.
Schellekens, A., Warner, N., Anomaly cancellation and self-dual lattices, Phys. Lett. B, 1986, 181(3–4): 339–343.
Schellekens, A., Warner, N., Anomalies, characters and strings, Nuclear Phys. B, 1987, 287(2): 317–361.
Liu, K. F., On elliptic genera and theta-functions, Topology, 1996, 35: 617–640.
Hirzebruch, F., Slodowy, P., Elliptic genera, inolutions, and homogeneous spin manifolds, Geometriae Dedicata, 1990, 35: 309–343.
Chandrasckharan, K., Elliptic Functions, Berlin: Springer, 1985.
Mumford, D., Tata Lectures on Theta I, Boston: Birkhäauser, 1983.
Mumford, D., Tata Lectures on Theta II, Boston: Birkhäauser, 1984.
Atiyah, M. F., Bott, R., A Lefschetz fixed point formula for elliptic complexes: II, Applications, in Collected Works (ed. Atiyah’s, M. F.), Vol. 3, NY: Oxford Sci. Publ. Oxford Univ. Press, 1988, 129–170.
Bröocker, T., Dieck, T., Representations of Compact Lie Groups, Graduate Texts in Mathematics, No. 98, New York: Springer-Verlag, 1985, 216–222.
Liu, K. F., On modular invarince and rigidity theorems, J. Differential Geometry, 1995, 41: 343–396.
Liu, K. F., Modular forms and topology, Contemporary Mathematics, 1996, 193: 237–262.
Gorbouno, V., Malikov, F., The chiral de Rham complex and positivity of the equivariant signature of the loop space, arXiv.math.AT/0205132.