Elliptic Fixed Points with an Invariant Foliation: Some Facts and More Questions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnol’d, V. I., Small Denominators: 1. Mapping the Circle onto Itself, Izv. Akad. Nauk SSSR. Ser. Mat., 1961, vol. 1, no. 1, pp. 21–86 (Russian).
Chen, K.-T., Normal Forms of Local Diffeomorphisms on the Real Line, Duke Math. J., 1968, vol. 35, pp. 549–555.
Chenciner, A., From Elliptic Fixed Points of 2D-Diffeomorphisms to Dynamics in the Circle and the Annulus, : Université Tsinghua University, (Beijing, April–May 2019), 59 pp.
Chenciner, A., Perturbing a Planar Rotation: Normal Hyperbolicity and Angular Twist, in Geometry in History, S. G. Dani, A. Papadopoulos (Eds.), Cham: Springer, 2019, pp. 451–468.
Geyer, L., Siegel Discs, Herman Rings and the Arnold Family, Trans. Amer. Math. Soc., 2001, vol. 353, no. 9, pp. 3661–3683.
Herman, M.-R., Mesure de Lebesgue et nombre de rotation, in Geometry and Topology: Proc. of the 3rd Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq (Rio de Janeiro, 1976), Lecture Notes in Math., vol. 597, Berlin: Springer, 1977, pp. 271–293.
Krikorian, R., On the Divergence of Birkhoff Normal Forms, arXiv:1906.01096 (2019).
Pérez-Marco, R., Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe (d’après J. C. Yoccoz), in Séminaire Bourbaki: Vol. 1991/1992, Exp. 745-759, Paris: Soc. Math. France, 1992, pp. 273–310.
Pérez-Marco, R., Convergence or Generic Divergence of the Birkhoff Normal Form, Ann. of Math. (2), 2003, vol. 157, no. 2, pp. 557–574.
Sternberg, Sh., Local Contractions and a Theorem of Poincaré, Amer. J. Math., 1957, vol. 79, no. 4, pp. 809–824.
Yoccoz, J.-Ch., Théorème de Siegel, nombres de Brjuno et polynômes quadratiques, in Petits diviseurs en dimension $$1$$, Astérisque, vol. 231, Paris: Soc. Math. France, 1995, pp. 3–88.