Eliminating inertia in a stochastic model of a micro-swimmer with constant speed
Tóm tắt
We are concerned with the dynamical description of the motion of a stochastic micro-swimmer with constant speed and fluctuating orientation in the long time limit by adiabatic elimination of the orientational variable. Starting with the corresponding full set of Langevin equations, we eliminate the memory in the stochastic orientation and obtain a stochastic equation for the position alone in the overdamped limit. An equivalent procedure based on the Fokker-Planck equation is presented as well.