Elicitation of phenylpropanoids in maqui (Aristotelia chilensis [Mol.] Stuntz) plants micropropagated in photomixotrophic temporary immersion bioreactors (TIBs)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Almagro L, Tudela LR, Sabater-Jara AB, Miras-Moreno B, Pedreño MA (2017) Cyclodextrins increase phytosterol and tocopherol levels in suspension-cultured cells obtained from mung beans and safflower. Biotechnol Prog 33:1662–1665. https://doi.org/10.1002/btpr.2525
Arencibia AD, Bernal A, Yang L, Cortegaza L, Carmona ER, Pérez A, Hu C-J, Li YR, Zayas CM, Santana I (2008) New role of phenylpropanoid compounds during sugarcane micropropagation in Temporary Immersion Bioreactors (TIBs). Plant Sci 175:487–496. https://doi.org/10.1016/j.plantsci.2008.05.024
Arencibia AD, Bernal A, Zayas C, Carmona E, Cordero C, González G, García R, Santana I (2012) Hydrogen peroxide induced phenylpropanoids pathway eliciting a defensive response in plants micropropagated in Temporary Immersion Bioreactors (TIBs). Plant Sci 195:71–79. https://doi.org/10.1016/j.plantsci.2012.06.016
Arencibia AD, Gómez A, Mora P, Orellana F, Alarcón JE (2018a) Photomixotrophic cultures of blueberries (Vaccinium corymbosum) accumulate or release phenylpropanoids via inductive treatments. Acta Physiol Plant 40:36. https://doi.org/10.1007/s11738-018-2615-x
Arencibia AD, Gómez A, Poblete MA, Orellana F, Alarcón JE, Cortez N, Valenzuela MA (2018b). Establishment of photomixotrophic cultures for high-scale micropropagation by Temporary Immersion Bioreactors (TIBs) in plant commercial species. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2018.1224.27
Arencibia AD, Gómez A, Poblete M, Vergara C (2017) High-performance micropropagation of dendroenergetic poplar hybrids in photomixotrophic Temporary Immersion Bioreactors (TIBs). Ind Crops Prod 96:102–109. https://doi.org/10.1016/j.indcrop.2016.11.065
Arencibia AD, Vergara C, Quiroz K, Carrasco B, García R (2013) Establishment of photomixotrophic cultures for raspberry micropropagation in Temporary Immersion Bioreactors (TIBs). Scientiae Horticulturae 160:49–53. https://doi.org/10.1016/j.scienta.2013.05.010
Arencibia AD, Vergara C, Quiroz K, Carrasco B, García R, Bravo C (2013) An approach for micropropagation of blueberry (Vaccinium corymbosum L.) plants mediated by Temporary Immersion Bioreactors (TIBs). Am J Plant Sci 4:1022–1028. https://doi.org/10.4236/ajps.2013.45126
Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. https://doi.org/10.1023/A:1015673200621
Baenas N, Villaño D, García-Viguera C, Moreno DA (2016) Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates. Food Chem 204:314–319. https://doi.org/10.1016/j.foodchem.2016.02.144
Batista DS, Sousa SHF, Silva TD, de Castro KM, Arencibia AD, Otoni WC (2018) Light quality in plant tissue culture: does it matter? Vitro Cell Dev Biol Plant 54:195–215. https://doi.org/10.1007/s11627-018-9902-5
Cardoso AA, Gori A, Da-Silva CJ, Brunetti C (2020) Abscisic acid biosynthesis and signaling in plants: key targets to improve water use efficiency and drought tolerance. Appl Sci 10(18):6322. https://doi.org/10.3390/app10186322
Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G (2011) Methyl jasmonate and 523 miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension 524 cultures. Plant Biol 13:51–58. https://doi.org/10.1111/j.1438-8677.2009.00306.x
De Carvalho AA, Bertolucci SKV, Honorato AC, Rocha T, Silva ST, Pereira-Pinto JEB (2020) Influence of light spectra and elicitors on growth and ascaridole content using in vitro cultures of Dysphania ambrosioides L. Plant Cell Tiss Organ Cult 143:277–290. https://doi.org/10.1007/s11240-020-01892-5
Carqueijeiro I, Langley C, Grzech D, Koudounas K, Papon N, O’Connor SE, Courdavault V (2020) Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Curr Opin Biotechnol 65:17–24. https://doi.org/10.1016/j.copbio.2019.11.017
Céspedes CL, Pavon N, Dominguez M, Alarcon J, Balbontin C, Kubo I, El-Hafidi M, Avila JG (2017) The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem Toxicol 108:438e450. https://doi.org/10.1016/j.fct.2016.12.036
Cho J, Choi KR, Lee SY (2020) Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol 65:129–141. https://doi.org/10.1016/j.copbio.2020.02.006
Dou H, Niu G, Gu M (2019) Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and gecondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy 9:434. https://doi.org/10.3390/agronomy9080434
Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598. https://doi.org/10.1007/s11101-007-9083-z
Espinosa P, Lorenzo J, Iglesias A, Yabor L, Menéndez E, Borroto J, Hernández L, Arencibia A (2002) Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep 21:136–140. https://doi.org/10.1007/s00299-002-0481-9
Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, Ding Z (2020) Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep 10:12275. https://doi.org/10.1038/s41598-020-69080-1
González B, Vogel H, Razmilic I, Wolfram E (2015) Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind Crops Prod 76:158–165. https://doi.org/10.1016/j.indcrop.2015.06.038
Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr Protoc Food Anal Chem. https://doi.org/10.1002/0471142913.faf0102s00
Han JE, Park YJ, Lee H, Jeong YJ, Park SY (2020) Increased brazzein expression by abiotic stress and bioreactor culture system for the production of sweet protein brazzein. Plant Biotechnol Reports 14:459–466. https://doi.org/10.1007/s11816-020-00625-6
Hemaiswarya S, Doble M (2010) Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J Med Microbiol 59:1469–1476. https://doi.org/10.1099/jmm.0.022426-0
Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P, Stavroulaki V, Sumbele S (2014) “Carbon gain vs. water saving, growth vs. defence”: two dilemmas with soluble phenolics as a joker. Plant Sci 227:21–27. https://doi.org/10.1016/j.plantsci.2014.06.014
Karaman K (2020) Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chem 313:126129. https://doi.org/10.1016/j.foodchem.2019.126129
Lachowicz S, Świeca M, Pejcz E (2021) Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem 338:128026. https://doi.org/10.1016/j.foodchem.2020.128026
Landi M, Zivcak M, Sytar O, Brestic M, Allakhverdiev SI (2020) Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: a review. Biochimica Et Biophysica Acta BBA Bioenergetics 1861:148131. https://doi.org/10.1016/j.bbabio.2019.148131
Lee J, Cristopher R, Wrolstad RE (2008) Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem 110:782–786. https://doi.org/10.1016/j.foodchem.2008.03.010
Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34. https://doi.org/10.1016/j.procbio.2010.09.004
Moradi A, Zarinkamar F, De Domenico S, Mita G, Di Sansebastiano GP, Caretto S (2020) Salycilic acid induces exudation of crocin and phenolics in saffron suspension-cultured cells. Plants 9(8):949. https://doi.org/10.3390/plants9080949
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murcia G, Fontana A, Pontin M, Baraldi R, Bertazza G, Piccoli PN (2017) ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 135:34–52. https://doi.org/10.1016/j.phytochem.2016.12.007
Nascimento DSLB, Brunetti C, Agati G, Lo Iacono C, Detti C, Giordani E, Ferrini F, Gori A (2020) Short-term pre-harvest UV-B supplement enhances the polyphenol content and antioxidant capacity of Ocimum basilicum leaves during storage. Plants 9(6):797. https://doi.org/10.3390/plants9060797
Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Organ Cult 81:287–300. https://doi.org/10.1007/s11240-004-6648-z
Perin EC, da Silva R, Borowski JM, Crizel RL, Schott IB, Carvalho R, Rombaldi CV, Galli V (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526. https://doi.org/10.1016/j.foodchem.2018.07.213
Quispe I, Vega A, Aranda M, Poblete J, Pasten A, Bilbao C, Wood D, McHugh T, Delporte C (2020) Effects of drying processes on composition, microstructure and health aspects from maqui berries. J Food Sci Technol 57:2241–2250. https://doi.org/10.1007/s13197-020-04260-5
Rai MK, Shekhawat NS, Harish A, Gupta K, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult 106:179–190. https://doi.org/10.1007/s11240-011-9923-9
Ramakrishna A, Gokare AR (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. https://doi.org/10.4161/psb.6.11.17613
Rodríguez K, Ah-Hen KS, Vega A, Vasquez V, Quispe I, Rojas P, Lemus R (2016) Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT Food Sci Technol 65:537–542. https://doi.org/10.1016/j.lwt.2015.08.050
Romero J, Ah-Hen KS, Lemus R, Muñoz O (2020) Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem 313:126115. https://doi.org/10.1016/j.foodchem.2019.126115
Ruffoni B, Pistelli L, Bertoli B, Pistelli L (2010) Plant cell cultures bioreactors for industrial production. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals. Advances in experimental medicine and biology, vol 698. Springer, Boston, MA
Sajc L, Grubisic D, Vunjak G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99. https://doi.org/10.1016/S1369-703X(99)00035-2
Swieca M (2016) Potentially bioaccessible phenolics, antioxidant activity and nutritional quality of young buckwheat sprouts affected by elicitation and elicitation supported by phenylpropanoid pathway precursor feeding. Food Chem 192:625–632. https://doi.org/10.1016/j.foodchem.2015.07.058
Thadewald T, Büning H (2007) Jarque-Bera test and its competitors for testing normality—A power comparison. J Appl Stat 34:87–105. https://doi.org/10.1080/02664760600994539
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer HW, Zeeman SC, Santelia D (2016) Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell 28:1860–1878
Vidal L, Avello M, Loyola C, Campos J, Aqueveque P, Dungan SR, Galotto M, Guarda A (2013) Microencapsulation of maqui (Aristotelia chilensis Molina Stuntz) leaf extracts to preserve and control antioxidant propertie. Chilean J Agric Res 73:17–22. https://doi.org/10.4067/S0718-58392013000100003
Villalobos L, Peña-Neira A, Ibáñez F, Pastenes C (2016) Long-term efects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: gene expression and metabolite content. Plant Physiol Biochem 105:213–223. https://doi.org/10.1016/j.plaphy.2016.04.012
Wilrich PT (2013) Critical values of Mandel’s h and k, the Grubbs and the Cochran test statistic. AStA Adv Stat Anal 97:1–10. https://doi.org/10.1007/s10182-011-0185-y
Xu Y, Charles MT, Luo Z, Mimee B, Tong Z, Roussel D, Rolland D, Véronneau PY (2019) Preharvest UV-C treatment affected postharvest senescence and phytochemicals alternation of strawberry fruit with the possible involvement of abscisic acid regulation. Food Chem 299:125138. https://doi.org/10.1016/j.foodchem.2019.125138
Yang D, Park SY, Park YS, Eun H, Lee SY (2020) Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol 38:745–765. https://doi.org/10.1016/j.tibtech.2019.11.007
Yang L, Zambrano Y, Hu C-J, Carmona ER, Bernal A, Pérez A, LiY-R GA, Santana I, Arencibia AD (2010) Sugarcane metabolites produced in CO2-rich temporary immersion bioreactors (TIBs) induce tomato (Solanum lycopersicum) resistance against bacterial wilt (Ralstonia solanacearum). Vitro Cell Dev Biol Plant 46:558–568. https://doi.org/10.1007/s11627-010-9312-9
Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Review Biotechnol 36:215–232. https://doi.org/10.3109/07388551.2014.923986
Zeng YJ, Xu P, Yang HR, Zong MH, Lou WY (2018) Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. LWT Food Science and Technology 95:316–325. https://doi.org/10.1016/j.lwt.2018.04.087
Zhang W, Jiang W (2019) UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends Food Sci Technol 92:71–80. https://doi.org/10.1016/j.tifs.2019.08.012
Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Zhong JJ et al (eds) Plant cells. Advances in biochemical engineering/biotechnology, vol 72. Springer, Berlin, Heidelberg
Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tiss Organ Cult 81:277–285. https://doi.org/10.1007/s11240-004-6649-y