Elicitation of Stevia Glycosides Using Salicylic Acid and Silver Nanoparticles Under Callus Culture

Sugar Tech - 2019
Pooran Golkar1, Mahsa Moradi2, Ghasem Ali Garousi2
1Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran
2Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad, N., A. Rab, and N. Ahmad. 2016. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Journal of Photochemistry and Photobiology B: Biology 154: 51–56.

Barbasz, A., B. Kreczmer, and M. Ocwieja. 2016. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiologiae Plantarum 38(3): 76.

Bourgaud, F., A. Gravot, S. Milesi, and E. Gontier. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161(5): 839–851.

Brandle, J.E., and P.G. Telmer. 2007. Steviol glycoside biosynthesis. Phytochemistry 68(14): 1855–1863.

Compton, M.E. 1994. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell, Tissue and Organ Culture 37: 217–242.

Fazal, H., B.H. Abbasi, N. Ahmad, and M. Ali. 2016. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Applied Biochemistry and Biotechnology 180(6): 1076–1092.

Geuns, J.M. 2003. Stevioside. Phytochemistry 64(5): 913–921.

Gadzovska, S., S. Maury, A. Delaunay, M. Spasenoski, D. Hagège, D. Courtois, and C. Joseph. 2013. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture 113(1): 25–39.

Goswami, L., K.H. Kim, A. Deep, P. Das, S.S. Bhattacharya, S. Kumar, and A.A. Adelodun. 2017. Engineered nano particles: Nature behavior and effect on the environment. Journal of Environmental Management 196: 297–315.

Gupta, P., S. Sharma, and S. Saxena. 2014. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside production. Applied Biochemistry and Biotechnology 172(6): 2894–2906.

Hajihashemi, S., and J. Geuns. 2016. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio 6(9): 937–944.

Janarthanam, B., M. Gopalakrishnan, and T. Sekar. 2010. Secondary metabolite production in callus cultures of Stevia rebaudiana Bertoni. Bangladesh Journal of Scientific and Industrial Research 45(3): 243–248.

Jasim, B., R. Thomas, J. Mathew, and E.K. Radhakrishnan. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal 25(3): 443–447.

Javed, R., B. Yucesan, M. Zia, and E. Gurel. 2017. Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech 20(2): 194–201.

Kang, S.M., H.Y. Jung, Y.M. Kang, D.J. Yun, J.D. Bahk, J.K. Yang, and M.S. Choi. 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166: 745–751.

Kumar, V., G. Parvatam, and G.A. Ravishankar. 2009. AgNO3: A potential regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology 12: 8–9.

Mahmud, S., S. Akter, I. Jahan, S. Khan, A. Khaleque, and S. Islam. 2014. Comparative analyses of stevioside between fresh leaves and in vitro derived callus tissue from Stevia rebaudiana Bert using HPLC. Bangladesh Journal of Scientific and Industrial Research 49: 199–204.

Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473–497.

Mandeh, M., M. Omidi, and M. Rahaie. 2012. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Elements Research 150: 376–380.

Marslin, G., C.J. Sheeba, and G. Franklin. 2017. Nan particles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science 8: 832.

Mathur, S.H., and G.S. Shekhawat. 2013. Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiologica Plantarum 35: 931–939.

Namdeo, A.G. 2007. Plant cell elicitation for production of secondary metabolites: A review. Pharmacognozy Review 1: 69–79.

Piasecka, A., N. Jedrzejczak-Rey, and P. Bednarek. 2015. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytologist 206(3): 948–964.

Rao, S.R., and G. Ravishankar. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances 20: 101–153.

Shaoping, X., X.Z. Ouyang, L. Hongwei, M.C. Chen, and D. Wang. 1998. Stevia callus growth, differentiation and stevioside accumulation relationship. Journal of Tropical and Subtropical Botany 6(1): 8–14.

Sosan, A., D. Svistunenko, D. Straltsova, K. Tsiurkina, I. Smolich, T. Lawson, S. Subramaniam, V. Golovko, D. Anderson, A. Sokolik, and I. Colbeck. 2016. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant Journal 85(2): 245–257.

Swanson, S.M., G.B. Mahady, and C.W.W. Beecher. 1992. Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell, Tissue and Organ Culture 28: 151–157.

Syu, Y.Y., J.H. Hung, J.C. Chen, and H.W. Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry 83: 57–64.

Tiwari, R., and C.S. Rana. 2015. Plant secondary metabolites: A review. International Journal of Engineering Research and General Science 3: 661–670.

Vannini, C., G. Domingo, E. Onelli, B. Prinsi, M. Marsoni, L. Espen, and M. Bracale. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8: 68752.

Vecerova, K., Z. Vecera, B. Docekal, M. Oravec, A. Pompeiano, J. Tríska, and O. Urban. 2016. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution 218: 207–218.

Wang, Y.D., J.C. Wu, and Y.J. Yuan. 2007. Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biology International 31(10): 1179–1183.

Yamazaki, T., and H.E. Flores. 1991. Examination of steviol glycoside production by hair root and shoot cultures of Stevia rebaudiana. Journal of Natural Products 54: 986–992.

Yu, Z.Z., C.X. Fu, Y.S. Han, Y.X. Li, and D.X. Zhao. 2006. Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnology Letters 28(13): 1027–1031.