Độ ẩm không khí tăng cường kéo dài thời gian sinh trưởng tích cực và tăng cường hiệu suất tái hấp thu nitơ lá của cây bạch dương bạc

Oecologia - 2020
K. Rosenvald1, K. Lõhmus1, G. Rohula-Okunev1, R. Lutter2,3, P. Kupper1, A. Tullus1
1Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
2Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
3Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden

Tóm tắt

Các mô hình khí hậu dự đoán lượng mưa và độ ẩm khí quyển tương đối ngày càng tăng đối với các vĩ độ cao ở Bắc Bán cầu. Do đó, các loài cây cần thích ứng với các điều kiện khí hậu mới. Chúng tôi đã nghiên cứu các cây bạch dương bạc (Betula pendula Roth) non trong một thí nghiệm điều chỉnh độ ẩm không khí kéo dài (2012–2018) nhằm làm rõ các cơ chế thích ứng với độ ẩm khí quyển tương đối cao. Từ năm 2016 đến 2018, chúng tôi đã theo dõi sự tăng trưởng bán kính thân (đo bằng dụng cụ đo đường kính cây) và sự rụng lá, đồng thời xác định hiệu suất tái hấp thu N và P của lá. Phân bổ sinh khối đã được ước tính và động lực theo mùa của việc lưu trữ NPK trong lá cũng được đánh giá. Việc tăng độ ẩm đã làm tăng hiệu suất tái hấp thu N lên 11%. Giá trị trung bình hàng năm của hiệu suất tái hấp thu N dao động từ 41 đến 52% ở khu vực chứng nghiệm và từ 50 đến 59% ở khu vực có độ ẩm cao. Hiệu suất tái hấp thu P phụ thuộc mạnh vào điều kiện thời tiết và dao động giữa các năm từ 25 đến 66%. Lưu trữ NPK cao hơn trong lá vào cuối mùa sinh trưởng và sự rụng lá bị trì hoãn đã cho phép kéo dài thời gian sinh trưởng ở những khu vực có độ ẩm, dẫn đến việc tăng trưởng bán kính thân lâu hơn một tuần. Mặc dù sự tăng trưởng đường kính thân của cây bạch dương bạc được tưới ẩm phục hồi sau 5 năm, nhưng sự chậm lại về chiều cao cây vẫn tiếp diễn qua bảy năm nghiên cứu, dẫn đến việc tăng tỷ lệ dốc của thân (tỷ lệ đường kính trên chiều cao) dưới điều kiện độ ẩm cao. Thêm vào đó, việc tăng độ ẩm đã làm tăng tỷ lệ xơ của vỏ cây trong sinh khối thân và số lượng cành trên chiều dài tán cây. Việc cây bạch dương bạc thích ứng với độ ẩm không khí tăng cao sẽ dẫn đến những thay đổi trong chu trình N của rừng và chất lượng gỗ bạch dương.

Từ khóa

#độ ẩm không khí #bạch dương bạc #tái hấp thu nitrogen #sinh khối #chu trình nitrogen #chất lượng gỗ

Tài liệu tham khảo

Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. https://doi.org/10.2307/2261481

Ågren GI (2004) The C: N: P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

Aosaar J, Mander Ü, Varik M, Becker H, Morozov G, Maddison M, Uri V (2016) Biomass production and nitrogen balance of naturally afforested silver birch (Betulapendula Roth.) stand in Estonia. Silva Fenn. https://doi.org/10.14214/sf.1628

Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22(17):1201–1210

Benomar L, DesRochers A, Larocque GR (2012) The effects of spacing on growth, morphology and biomass production and allocation in two hybrid poplar clones growing in the boreal region of Canada. Trees 26:939–949. https://doi.org/10.1007/s00468-011-0671-6

Boerner REJ (1985) Foliar nutrient dynamics, growth and nutrient use efficiency of Hammamelis Virginiana in three forest microsites. Can J Bot 63:1476–1481. https://doi.org/10.1139/b85-204

Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Ann Rev Ecol Syst 13:229. https://doi.org/10.1146/annurev.es.13.110182.001305

Cooke JEK, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytol 167:19–30. https://doi.org/10.1111/j.1469-8137.2005.01451.x

Escudero A, del Arco JM, Sanz IC, Ayala J (1992) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87. https://doi.org/10.1007/BF00317812

Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Clim Res 32:253–267. https://doi.org/10.3354/cr032253

Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186(4):879–889. https://doi.org/10.1111/j.1469-8137.2010.03228.x

Geiger R, Aron RH, Todhunter P (2009) The climate near the ground, 7th edn. Vieweg+Teubner Verlag, Wiesbaden. 10.1007/978-3-322-86582-3

Gill AL, Gallinat AS, Sanders-DeMott R, Rigden AJ, Short Gianotti DJ, Mantooth JA, Templer PH (2015) Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann Bot 116(6):875–888. https://doi.org/10.1093/aob/mcv055

Godbold D, Tullus A, Kupper P, Sõber J, Ostonen I, Godbold JA, Lukac M, Ahmed IU, Smith AR (2014) Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides. Ann For Sci 71:831–842. https://doi.org/10.1007/s13595-014-0382-4

Heilmeier H, Schulze E, Whale D (1986) Carbon and nitrogen partitioning in the biennial monocarp Arctium tomentosum Mill. Oecologia 70:466–474. https://doi.org/10.1007/BF00379513

IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563. https://doi.org/10.1007/s10113-013-0499-2

Karlsson K (2000) Stem form and taper changes after thinning and nitrogen fertilization in Picea abies and Pinus sylvestris stands. Scand J For Res 15(6):621–632. https://doi.org/10.1080/02827580050216879

Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. https://doi.org/10.2307/2265777

Killingbeck KT, May JD, Nyman S (1990) Foliar senescence in an aspen (Populus tremuloides) clone—the response of element resorption to interramet variation and timing of abscission. Can J For Res 20:1156–1164. https://doi.org/10.1139/x90-154

Kozlowski TT, Pallardy SG (1997) Physiology of woody plants, 2nd edn. Academic Press, San Diego

Kupper P, Sõber J, Sellin A, Lõhmus K, Tullus A, Räim O, Lubenets K, Tulva I, Uri V, Zobel M, Kull O, Sõber A (2011) An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ Exp Bot 72:432–438. https://doi.org/10.1016/j.envexpbot.2010.09.003

Kupper P, Rohula G, Inno L, Ostonen I, Sellin A, Sõber A (2017) Impact of high daytime air humidity on nutrient uptake and night-time water flux in silver birch, a boreal forest tree species. Reg Environ Change 17:2149–2157. https://doi.org/10.1007/s10113-016-1092-2

Kurepin LV, Stangl ZR, Ivanov AG, Bui V, Mema M, Hüner NPA, Öquist G, Way D, Hurry V (2018) Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature. Plant Cell Environ 41(6):1331–1345. https://doi.org/10.1111/pce.13158

Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York. 10.2307/3242233

Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. https://doi.org/10.1093/jxb/erp096

Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, Oksanen E (2016) Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles of birch and aspen. J Exp Bot 67:4367–4378. https://doi.org/10.1093/jxb/erw219

Luostarinen K, Verkasalo E (2000) Birch as sawn timber and in mechanical further processing in Finland. A literature study. Silva Fennica Monogr 1:40

Martin AR, Gezahegn S, Thomas SC (2015) Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can J For Res 45:744–757. https://doi.org/10.1139/cjfr-2015-0024

Mikola J, Silfver T, Paaso U, Possen B, Rousi M (2018) Leaf N resorption efficiency and litter N mineralization rate have a genotypic trade-off in a silver birch population. Ecology 99(5):1227–1235. https://doi.org/10.1002/ecy.2176

Parts K, Tedersoo L, Lõhmus K, Kupper P, Rosenvald K, Sõber A, Ostonen I (2013) Increased air humidity and understory composition shape short root traits and the colonizing ectomycorrhizal fungal community in silver birch stands. For Ecol Manage 310:720–728. https://doi.org/10.1016/j.foreco.2013.09.01

Pliūra A, Jankauskienė J, Lygis V, Suchockas V, Bajerkevičienė G, Verbylaitė R (2018) Response of juvenile progeny of seven forest tree species and their populations to simulated climate change-related stressors, heat, elevated humidity and drought. IForest 11(3):374–388. https://doi.org/10.1007/s10265-019-01146-2

R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

Räisanen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willen U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31. https://doi.org/10.1007/s00382-003-0365-x

Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham CH, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969. https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol 201:486–497. https://doi.org/10.1111/nph.12541

Rosenvald K, Tullus A, Ostonen I, Uri V, Kupper P, Aosaar J, Varik M, Sõber J, Niglas A, Hansen R, Rohula G, Kukk M, Sõber A, Lõhmus K (2014) The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation—acclimation mechanisms and capacity. For Ecol Manage 330:252–260. https://doi.org/10.1016/j.foreco.2014.07.016

Ryan DF, Bormann FH (1982) Nutrient resorption in northern hardwood forests. Bioscience 32:29–32. https://doi.org/10.2307/1308751

Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149:369–400. https://doi.org/10.1046/j.1469-8137.2001.00057.x

See CR, Yanai RD, Fahey TJ (2019) Shifting N and P concentrations and stoichiometry during autumn litterfall: Implications for ecosystem monitoring. Ecol Indic 103:488–492. https://doi.org/10.1016/j.ecolind.2019.04.017

Sellin A, Tullus A, Niglas A, Õunapuu E, Karusion A, Lõhmus K (2013) Humidity-driven changes in growth rate, photosynthetic capacity, hydraulic properties and other functional traits in silver birch (Betula pendula). Ecol Res 28:523–535. https://doi.org/10.1007/s11284-013-1041-1

Sellin A, Rosenvald K, Õunapuu-Pikas E, Tullus A, Ostonen I, Lõhmus K (2015) Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Frontiers in Plant Science 6:860. https://doi.org/10.3389/fpls.2015.00860

Sellin A, Alber M, Keinänen M, Kupper P, Lihavainen J, Lõhmus K, Oksanen E, Sõber A, Sõber J, Tullus A (2017) Growth of northern deciduous trees under increasing atmospheric humidity: Possible mechanisms behind the growth retardation. Reg Environ Change 17(7):2135–2148. https://doi.org/10.1007/s10113-016-1042-z

STATSOFT, INC (2004) Statistica (data analysis software system) version 7. Statsoft Inc., Tulsa

Tammisola J, Varhimo A, Velling P, Viherä-Aarnio A, Kauppinen V, Sundquist J, Lapinjoki S (1995) Variation in the wood and pulping properties of European white birch. Paperi ja puu (Paper and Timber) 77(10):648–654

Tateno R, Takeda H (2018) Nitrogen resorption efficiency of 13 tree species of a cool temperate deciduous forest in central Japan. J Forest Res 23(2):91–97. https://doi.org/10.1080/13416979.2018.1432303

Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Change Biol 20:3313–3328. https://doi.org/10.1111/gcb.12581

Tullus A, Kupper P, Sellin A, Parts L, Sõber J, Tullus T, Lõhmus K, Sõber A, Tullus H (2012) Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. PLoS ONE 7:e42648. https://doi.org/10.1371/journal.pone.0042648

Uri V, Lõhmus K, Ostonen I, Tullus H, Lastik R, Vildo M (2007) Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betulapendula Roth.) stand growing on abandoned agricultural land. Eur J Forest Res 126:495–506. https://doi.org/10.1007/s10342-007-0171-9

van Heerwaarden LM, Toet S, Aerts R (2003) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101(3):664–669. https://doi.org/10.1034/j.1600-0706.2003.12351.x

Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82(2):205–220. https://doi.org/10.1890/11-0416

Vitasse Y, Porté AJ, Kremer A, Michalet R, Delzon S (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. https://doi.org/10.1007/s00442-009-1363-4

Weih M (2009) Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): effects on shoot growth and nitrogen economy. Tree Physiol 29(12):1479–1490. https://doi.org/10.1093/treephys/tpp081

Wendler R, Millard P (1996) Impacts of water and nitrogen supplies on the physiology, leaf demography and nitrogen dynamics of Betula pendula. Tree Physiol 16(1–2):153–159