Ảnh hưởng của CO2 khí quyển gia tăng đến quá trình chuyển hóa carbon và nitơ, cũng như cộng đồng vi sinh vật trong môi trường ngập nước tái tạo
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73(2):395–415
Barnard R, Leadley PW, Lensi R, Barthes L (2005) Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecol 27(3):171–178
Brym A, Paerl HW, Montgomery MT, Handsel LT, Ziervogel K, Osburn CL (2014) Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments. Mar Chem 162:96–113
Chang CM (2019) Rationalization and prediction of the impact of different metals and root exudates on carbon dioxide emission from soil. Sci Total Environ 691:348–359
Fan F, Zhang B, Morrill PL (2017) Phospholipid fatty acid (PLFA) analysis for profiling microbial communities in offshore produced water. Mar Pollut Bull 122(1–2):194–206
Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87(3):570–579
Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22(1–2):59–65
Gao J, Song Z, Liu Y (2019) Response mechanisms of leaf nutrients of endangered plant (Acer catalpifolium) to environmental factors varied at different growth stages. Glob Ecol Conserv 17:e00521
Gorman-Lewis D, Martens-Habbena W, Stahl DA (2019) Cu(II) adsorption onto ammonia-oxidizing bacteria and archaea. Geochim Cosmochim Acta 255:127–143
Guo W, Jia G, Ye F, Xiao H, Zhang Z (2019) Lipid biomarkers in suspended particulate matter and surface sediments in the Pearl River estuary, a subtropical estuary in southern China. Sci Total Environ 646:416–426
Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409(6817):188–191
Hungate BA (1999) Ecosystem responses to rising atmospheric CO2. In: Luo Y, Mooney HA, eds. Carbon Dioxide and Environmental Stress. Academic Press, San Diego, pp 265–285
James RT, Martin J, Wool T, Wang PF (1997) A sediment resuspension and water quality model of Lake Okeechobee. J Am Water Resour Assoc 33(3):661–678
Jensen HS, Andersen FO (1992) Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol Oceanogr 37(3):577–589
Jinbo Z, Changchun S, Shenmin W (2007) Dynamics of soil organic carbon and its fractions after abandonment of cultivated wetlands in Northeast China. Soil Tillage Res 96(1–2):350–360
Kang H, Kim SY, Fenner N, Freeman C (2005) Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Sci Total Environ 337(1–3):207–212
Kelly JJ, Peterson E, Winkelman J, Walter TJ, Rier ST, Tuchman NC (2013) Elevated atmospheric CO2 impacts abundance and diversity of nitrogen cycling dunctional genes in soil. Microb Ecol 65(2):394–404
Laut L et al (2020) Organic matter compounds as a tool for trophic state characterization in a hypersaline environment: Araruama lagoon, Brazil. J S Am Earth Sci 97:102403
Li X, Fan F, Zhang B, Zhang K, Chen B (2018) Biosurfactant enhanced soil bioremediation of petroleum hydrocarbons: design of experiments (DOE) based system optimization and phospholipid fatty acid (PLFA) based microbial community analysis. Int Biodeterior Biodegrad 132:216–225
Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128(3):305–316
Liu J, Appiah-Sefah G, Apreku TO (2018) Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Sci Eng 11(1):39–45
Madsen TV, Sandjensen K (1994) The interactive effects of light and inorganic carbon on aquatic plant growth. Plant Cell Environ 17(8):955–962
Maltais-Landry G, Maranger R, Brisson J, Chazarenc F (2009) Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environ Pollut 157(3):748–754
Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124(3):432–445
Niklaus PA, Spinnler D, Körner C (1998) Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117(1–2):201–208
Nord EA, Jaramillo RE, Lynch JP (2015) Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils. Front Plant Sci 6:96
Pang D et al (2019) Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of Southwest China. Ecol Eng 138:391–402
Satake K, Shimura S (1983) Carbon dioxide assimilation from air and water by duckweed Spirodela polyrrhiza (L.) Schleid. Hydrobiologia 107(1):51–55
Satoh H, Nakamura Y, Okabe S (2007) Influences of infaunal burrows on the community structure and activity of ammonia-oxidizing bacteria in intertidal sediments. Appl Environ Microbiol 73(4):1341–1348
Smolander A, Kitunen V (2002) Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem 34(5):651–660
Song L, Wu J, Li C, Li F, Peng S, Chen B (2009) Different responses of invasive and native species to elevated CO2 concentration. Acta Oecol 35(1):128–135
Sowerby A, Blum H, Gray TRG, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32(10):1359–1366
Tzanakakis VA, Taylor AE, Bakken LR, Bottomley PJ, Myrold DD, Dörsch P (2019) Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in Oregon forest soils. Soil Biol Biochem 139:107612
Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob Biogeochem Cycles 14(3):745–765
Wang J, Zhu T, Ni H, Zhong H, Fu X, Wang J (2013) Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China. PLoS One 8:e66563
Wrage N, Velthof GL, Van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732
Xing W, Wang Y, Hao T, He Z, Jia F, Yao H (2020) pH control and microbial community analysis with HCl or CO2 addition in H-2-based autotrophic denitrification. Water Res 168:115200
Yang S et al (2019) Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials. Sci Total Environ 652:1474–1481
Yu T, Chen Y (2019) Effects of elevated carbon dioxide on environmental microbes and its mechanisms: a review. Sci Total Environ 655:865–879
Zhang H, Wang L, Li Y, Wang P, Wang C (2019a) Background nutrients and bacterial community evolution determine 13C-17β-estradiol mineralization in lake sediment microcosms. Sci Total Environ 651:2304–2311
Zhang W, Zhang H, Jian S, Liu N (2019b) Tree plantations influence the abundance of ammonia-oxidizing bacteria in the soils of a coral island. Appl Soil Ecol 138:220–222