Elevated ambient carbon dioxide and Trichoderma inoculum could enhance cadmium uptake of Lolium perenne explained by changes of soil pH, cadmium availability and microbial biomass

Applied Soil Ecology - Tập 85 - Trang 56-64 - 2015
Ningning Song1,2,3, Yibing Ma1, Yujie Zhao2, Shirong Tang2
1National Soil Fertility and Fertilizer Effects Long-Term Monitoring Network/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
2Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
3Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, PR China

Tài liệu tham khảo

Barea, 2005, Microbial co-operation in the rhizosphere, J. Exp. Bot., 56, 1761, 10.1093/jxb/eri197 Behzadan, 2012, Bacteria inoculation speeds zinc release from ground tire rubber used as Zn fertilizer in a calcareous soil, Plant Soil, 361, 71, 10.1007/s11104-012-1303-7 Benitez, 2004, Biocontrol mechanisms of Trichoderma strains, Int. Microbiol., 7, 249 Brookes, 1985, Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature, Soil Biol. Biochem., 17, 831, 10.1016/0038-0717(85)90143-9 Castaldi, 2004, Suitability of soil microbial parameters as indicators of heavy metal pollution, Water Air Soil Pollut., 158, 21, 10.1023/B:WATE.0000044824.88079.d9 Cordier, 2009, Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms, Eur. J. Soil Biol., 45, 267, 10.1016/j.ejsobi.2008.12.004 Dary, 2010, In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria, J. Hazard. Mater., 177, 323, 10.1016/j.jhazmat.2009.12.035 Deng, 2011, Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp.: CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil, J. Hazard. Mater., 185, 717, 10.1016/j.jhazmat.2010.09.078 Dong, 2007, Root excretion and plant tolerance to cadmium toxicity – a review, Plant Soil Environ., 53, 193, 10.17221/2205-PSE Fiorentino, 2013, Assisted phytoextraction of heavy metals: compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora, Ital. J. Agron., 8, 244 Giller, 1998, Toxicity of heavy metals to microorganisms and microbial processes in agriculture soil: a review, Soil Biol. Biochem., 30, 1389, 10.1016/S0038-0717(97)00270-8 Gregorich, 1994, Towards a minimum data set to assess soil organic matter quality in agricultural soils, Can. J. Soil Sci., 74, 367, 10.4141/cjss94-051 Harman, 2006, Overview of mechanisms and uses of Trichoderma spp, Phytopathology, 96, 190, 10.1094/PHYTO-96-0190 Hu, 1999, Soil microbial feedbacks to atmospheric CO2 enrichment, Trends Ecol. Evol., 14, 433, 10.1016/S0169-5347(99)01682-1 Jia, 2010, Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress, J. Hazard. Mater., 180, 384, 10.1016/j.jhazmat.2010.04.043 Joergensen, 1996, The fumigation–extraction method to estimate soil microbial biomass: calibration of the kEN value, Soil Biol. Biochem., 28, 33, 10.1016/0038-0717(95)00101-8 Kacprzak, 2014, The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum, Appl. Environ. Soil Sci., 10.1155/2014/506142 Kaschuk, 2010, Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability, Soil Biol. Biochem., 42, 1, 10.1016/j.soilbio.2009.08.020 Kavamura, 2010, Biotechnological strategies applied to the decontamination of soils polluted with heavy metals, Biotechnol. Adv., 28, 61, 10.1016/j.biotechadv.2009.09.002 Keller, 2005, Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction, Environ. Sci. Technol., 39, 3359, 10.1021/es0484101 Lambrechts, 2014, Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization, Plant Soil, 376, 229, 10.1007/s11104-013-1975-7 Lavelle, 1997, Faunal activities and soil processes: adaptive strategies that determine ecosystem function, Adv. Ecol. Res., 27, 93, 10.1016/S0065-2504(08)60007-0 Li, 2012, Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene, J. Hazard. Mater., 209–210, 421, 10.1016/j.jhazmat.2012.01.055 Li, 2010, Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety, J. Hazard. Mater., 177, 352, 10.1016/j.jhazmat.2009.12.039 Liang, 2007, Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review, Environ. Pollut., 147, 422, 10.1016/j.envpol.2006.06.008 Liu, 2012, Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example, Environ. Sci. Technol., 46, 7856, 10.1021/es204681y Lu, 2012, Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators, Environ. Sci. Technol., 46, 5025, 10.1021/es202616v Lux, 2011, Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot., 62, 21, 10.1093/jxb/erq281 Lynch, 1990 Lynch, 1990, Substrate flow in the rhizosphere, Plant Soil, 129, 1, 10.1007/BF00011685 Ma, 2011, Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils, Biotechnol. Adv., 29, 248, 10.1016/j.biotechadv.2010.12.001 Marilley, 1999, Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions, Microb. Ecol., 38, 39, 10.1007/s002489900155 Montealegre, 2000, Elevated atmospheric CO2 alters microbial structure in a pasture ecosystem, Global Change Biol., 6, 475, 10.1046/j.1365-2486.2000.00326.x Moscatelli, 2005, Soil microbial indices as bioindicators of environmental changes in a poplar plantation, Ecol. Indic., 5, 171, 10.1016/j.ecolind.2005.03.002 Nguyen, 2011, Effects of elevated atmospheric CO2 on rhizosphere soil microbial communities in a Mojave Desert ecosystem, J. Arid Environ., 75, 917, 10.1016/j.jaridenv.2011.04.028 Niemeyer, 2012, Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil, Appl. Soil Ecol., 59, 96, 10.1016/j.apsoil.2012.03.019 Olsson, 1996, Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil, FEMS Microbiol. Ecol., 21, 77, 10.1111/j.1574-6941.1996.tb00335.x Rajkumar, 2008, Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard, Biores. Technol., 99, 3491, 10.1016/j.biortech.2007.07.046 Ren, 2006, Effects of cadmium on growth parameters of endophyte-infected endophyte-free ryegrass, J. Plant Nutr. Soil Sci., 169, 857, 10.1002/jpln.200520543 Ren, 2011, Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire Ex. Schreb, Int. J. Phytorem., 13, 233, 10.1080/15226511003671387 Ruiz, 2009, Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants, Chemosphere, 75, 1035, 10.1016/j.chemosphere.2009.01.042 Sadowsky, 1997, Soil microbial responses to increased concentrations of atmospheric CO2, Global Change Biol., 3, 217, 10.1046/j.1365-2486.1997.00078.x Sas-Nowosielska, 2004, Phytoextraction crop disposal: an unsolved problem, Environ. Pollut., 128, 373, 10.1016/j.envpol.2003.09.012 Sheng, 2008, Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape, Environ. Pollut., 156, 1164, 10.1016/j.envpol.2008.04.007 Sheoran, 2013, Phytomining of gold: a review, J. Geochem. Explor., 128, 42, 10.1016/j.gexplo.2013.01.008 Smejkalova, 2003, Effects of heavy metal concentrations on biological activity of soil micro-organisms, Plant Soil Environ., 49, 321, 10.17221/4131-PSE Song, 2013, Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil evidence from diffusive gradients in thin-films measurement, Int. J. Phytorem., 15, 268, 10.1080/15226514.2012.694500 Song, 2012, Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs, J. Environ. Radioact., 112, 29, 10.1016/j.jenvrad.2012.03.002 Srokol, 2004, Hydrothermal upgrading of biomass to biofuel: studies on some monosaccharide model compounds, Carbohydr. Res., 339, 1717, 10.1016/j.carres.2004.04.018 Stritsis, 2013, Cadmium uptake kinetics and plants factors of shoot Cd concentration, Plant Soil, 367, 591, 10.1007/s11104-012-1498-7 Stritsis, 2012, Shoot cadmium concentration of soil-grown plants as related to their root properties, J. Plant Nutr. Soil Sci., 175, 456, 10.1002/jpln.201100336 Tang, 2012, Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54 or in combination, J. Hazard. Mater., 198, 188, 10.1016/j.jhazmat.2011.10.029 Tang, 2003, Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil, Bull. Environ. Contam. Toxicol., 71, 988, 10.1007/s00128-003-0224-9 Tian, 2008, Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice, Environ. Sci. Technol., 42, 7649, 10.1021/es7027789 van Ginkel, 2000, Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition, Soil Biol. Biochem., 32, 449, 10.1016/S0038-0717(99)00097-8 van Groenigen, 2005, Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2, Soil Biol. Biochem., 37, 497, 10.1016/j.soilbio.2004.08.013 Vance, 1987, An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem., 19, 703, 10.1016/0038-0717(87)90052-6 Wan, 2012, Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L, Chemosphere, 89, 743, 10.1016/j.chemosphere.2012.07.005 Wang, 2006, Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions, Appl. Soil Ecol., 31, 110, 10.1016/j.apsoil.2005.03.002 Wang, 2009, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27, 195, 10.1016/j.biotechadv.2008.11.002 Wang, 2009, The distribution and phytoavailabilty of heavy metal fractions in rhizosphere soils of Paulowniu fortune (semm) Hems near a Pb/Zn smelter in Guangdong, PR China, Geoderma, 148, 299, 10.1016/j.geoderma.2008.10.015 Whiting, 2001, Phytoremediation assisted by microorganisms, Trends Plant Sci., 6, 502, 10.1016/S1360-1385(01)02093-3 Wong, 1982, A comparison of the toxicity of heavy metals using root elongation of ryegrass, Lolium perenne, New Phytol., 91, 255, 10.1111/j.1469-8137.1982.tb03310.x Zhang, 1995, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem., 67, 3391, 10.1021/ac00115a005 Zhang, 1998, In situ measurement of dissolved phosphorus in natural waters using DGT, Anal. Chim. Acta, 370, 29, 10.1016/S0003-2670(98)00250-5 Zhang, 2010, Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings, Eur. J. Soil Biol., 46, 55, 10.1016/j.ejsobi.2009.10.005 Zhang, 2000, Is the bioavailability index applicable for trace elements in different types of soils?, Chem. Spec. Bioavailab., 12, 117, 10.3184/095422900782775490