Elevated ambient carbon dioxide and Trichoderma inoculum could enhance cadmium uptake of Lolium perenne explained by changes of soil pH, cadmium availability and microbial biomass
Tài liệu tham khảo
Barea, 2005, Microbial co-operation in the rhizosphere, J. Exp. Bot., 56, 1761, 10.1093/jxb/eri197
Behzadan, 2012, Bacteria inoculation speeds zinc release from ground tire rubber used as Zn fertilizer in a calcareous soil, Plant Soil, 361, 71, 10.1007/s11104-012-1303-7
Benitez, 2004, Biocontrol mechanisms of Trichoderma strains, Int. Microbiol., 7, 249
Brookes, 1985, Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature, Soil Biol. Biochem., 17, 831, 10.1016/0038-0717(85)90143-9
Castaldi, 2004, Suitability of soil microbial parameters as indicators of heavy metal pollution, Water Air Soil Pollut., 158, 21, 10.1023/B:WATE.0000044824.88079.d9
Cordier, 2009, Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms, Eur. J. Soil Biol., 45, 267, 10.1016/j.ejsobi.2008.12.004
Dary, 2010, In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria, J. Hazard. Mater., 177, 323, 10.1016/j.jhazmat.2009.12.035
Deng, 2011, Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp.: CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil, J. Hazard. Mater., 185, 717, 10.1016/j.jhazmat.2010.09.078
Dong, 2007, Root excretion and plant tolerance to cadmium toxicity – a review, Plant Soil Environ., 53, 193, 10.17221/2205-PSE
Fiorentino, 2013, Assisted phytoextraction of heavy metals: compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora, Ital. J. Agron., 8, 244
Giller, 1998, Toxicity of heavy metals to microorganisms and microbial processes in agriculture soil: a review, Soil Biol. Biochem., 30, 1389, 10.1016/S0038-0717(97)00270-8
Gregorich, 1994, Towards a minimum data set to assess soil organic matter quality in agricultural soils, Can. J. Soil Sci., 74, 367, 10.4141/cjss94-051
Harman, 2006, Overview of mechanisms and uses of Trichoderma spp, Phytopathology, 96, 190, 10.1094/PHYTO-96-0190
Hu, 1999, Soil microbial feedbacks to atmospheric CO2 enrichment, Trends Ecol. Evol., 14, 433, 10.1016/S0169-5347(99)01682-1
Jia, 2010, Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress, J. Hazard. Mater., 180, 384, 10.1016/j.jhazmat.2010.04.043
Joergensen, 1996, The fumigation–extraction method to estimate soil microbial biomass: calibration of the kEN value, Soil Biol. Biochem., 28, 33, 10.1016/0038-0717(95)00101-8
Kacprzak, 2014, The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum, Appl. Environ. Soil Sci., 10.1155/2014/506142
Kaschuk, 2010, Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability, Soil Biol. Biochem., 42, 1, 10.1016/j.soilbio.2009.08.020
Kavamura, 2010, Biotechnological strategies applied to the decontamination of soils polluted with heavy metals, Biotechnol. Adv., 28, 61, 10.1016/j.biotechadv.2009.09.002
Keller, 2005, Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction, Environ. Sci. Technol., 39, 3359, 10.1021/es0484101
Lambrechts, 2014, Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization, Plant Soil, 376, 229, 10.1007/s11104-013-1975-7
Lavelle, 1997, Faunal activities and soil processes: adaptive strategies that determine ecosystem function, Adv. Ecol. Res., 27, 93, 10.1016/S0065-2504(08)60007-0
Li, 2012, Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene, J. Hazard. Mater., 209–210, 421, 10.1016/j.jhazmat.2012.01.055
Li, 2010, Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety, J. Hazard. Mater., 177, 352, 10.1016/j.jhazmat.2009.12.039
Liang, 2007, Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review, Environ. Pollut., 147, 422, 10.1016/j.envpol.2006.06.008
Liu, 2012, Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example, Environ. Sci. Technol., 46, 7856, 10.1021/es204681y
Lu, 2012, Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators, Environ. Sci. Technol., 46, 5025, 10.1021/es202616v
Lux, 2011, Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot., 62, 21, 10.1093/jxb/erq281
Lynch, 1990
Lynch, 1990, Substrate flow in the rhizosphere, Plant Soil, 129, 1, 10.1007/BF00011685
Ma, 2011, Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils, Biotechnol. Adv., 29, 248, 10.1016/j.biotechadv.2010.12.001
Marilley, 1999, Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions, Microb. Ecol., 38, 39, 10.1007/s002489900155
Montealegre, 2000, Elevated atmospheric CO2 alters microbial structure in a pasture ecosystem, Global Change Biol., 6, 475, 10.1046/j.1365-2486.2000.00326.x
Moscatelli, 2005, Soil microbial indices as bioindicators of environmental changes in a poplar plantation, Ecol. Indic., 5, 171, 10.1016/j.ecolind.2005.03.002
Nguyen, 2011, Effects of elevated atmospheric CO2 on rhizosphere soil microbial communities in a Mojave Desert ecosystem, J. Arid Environ., 75, 917, 10.1016/j.jaridenv.2011.04.028
Niemeyer, 2012, Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil, Appl. Soil Ecol., 59, 96, 10.1016/j.apsoil.2012.03.019
Olsson, 1996, Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil, FEMS Microbiol. Ecol., 21, 77, 10.1111/j.1574-6941.1996.tb00335.x
Rajkumar, 2008, Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard, Biores. Technol., 99, 3491, 10.1016/j.biortech.2007.07.046
Ren, 2006, Effects of cadmium on growth parameters of endophyte-infected endophyte-free ryegrass, J. Plant Nutr. Soil Sci., 169, 857, 10.1002/jpln.200520543
Ren, 2011, Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire Ex. Schreb, Int. J. Phytorem., 13, 233, 10.1080/15226511003671387
Ruiz, 2009, Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants, Chemosphere, 75, 1035, 10.1016/j.chemosphere.2009.01.042
Sadowsky, 1997, Soil microbial responses to increased concentrations of atmospheric CO2, Global Change Biol., 3, 217, 10.1046/j.1365-2486.1997.00078.x
Sas-Nowosielska, 2004, Phytoextraction crop disposal: an unsolved problem, Environ. Pollut., 128, 373, 10.1016/j.envpol.2003.09.012
Sheng, 2008, Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape, Environ. Pollut., 156, 1164, 10.1016/j.envpol.2008.04.007
Sheoran, 2013, Phytomining of gold: a review, J. Geochem. Explor., 128, 42, 10.1016/j.gexplo.2013.01.008
Smejkalova, 2003, Effects of heavy metal concentrations on biological activity of soil micro-organisms, Plant Soil Environ., 49, 321, 10.17221/4131-PSE
Song, 2013, Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil evidence from diffusive gradients in thin-films measurement, Int. J. Phytorem., 15, 268, 10.1080/15226514.2012.694500
Song, 2012, Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs, J. Environ. Radioact., 112, 29, 10.1016/j.jenvrad.2012.03.002
Srokol, 2004, Hydrothermal upgrading of biomass to biofuel: studies on some monosaccharide model compounds, Carbohydr. Res., 339, 1717, 10.1016/j.carres.2004.04.018
Stritsis, 2013, Cadmium uptake kinetics and plants factors of shoot Cd concentration, Plant Soil, 367, 591, 10.1007/s11104-012-1498-7
Stritsis, 2012, Shoot cadmium concentration of soil-grown plants as related to their root properties, J. Plant Nutr. Soil Sci., 175, 456, 10.1002/jpln.201100336
Tang, 2012, Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54 or in combination, J. Hazard. Mater., 198, 188, 10.1016/j.jhazmat.2011.10.029
Tang, 2003, Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil, Bull. Environ. Contam. Toxicol., 71, 988, 10.1007/s00128-003-0224-9
Tian, 2008, Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice, Environ. Sci. Technol., 42, 7649, 10.1021/es7027789
van Ginkel, 2000, Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition, Soil Biol. Biochem., 32, 449, 10.1016/S0038-0717(99)00097-8
van Groenigen, 2005, Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2, Soil Biol. Biochem., 37, 497, 10.1016/j.soilbio.2004.08.013
Vance, 1987, An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem., 19, 703, 10.1016/0038-0717(87)90052-6
Wan, 2012, Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L, Chemosphere, 89, 743, 10.1016/j.chemosphere.2012.07.005
Wang, 2006, Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions, Appl. Soil Ecol., 31, 110, 10.1016/j.apsoil.2005.03.002
Wang, 2009, Biosorbents for heavy metals removal and their future, Biotechnol. Adv., 27, 195, 10.1016/j.biotechadv.2008.11.002
Wang, 2009, The distribution and phytoavailabilty of heavy metal fractions in rhizosphere soils of Paulowniu fortune (semm) Hems near a Pb/Zn smelter in Guangdong, PR China, Geoderma, 148, 299, 10.1016/j.geoderma.2008.10.015
Whiting, 2001, Phytoremediation assisted by microorganisms, Trends Plant Sci., 6, 502, 10.1016/S1360-1385(01)02093-3
Wong, 1982, A comparison of the toxicity of heavy metals using root elongation of ryegrass, Lolium perenne, New Phytol., 91, 255, 10.1111/j.1469-8137.1982.tb03310.x
Zhang, 1995, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem., 67, 3391, 10.1021/ac00115a005
Zhang, 1998, In situ measurement of dissolved phosphorus in natural waters using DGT, Anal. Chim. Acta, 370, 29, 10.1016/S0003-2670(98)00250-5
Zhang, 2010, Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings, Eur. J. Soil Biol., 46, 55, 10.1016/j.ejsobi.2009.10.005
Zhang, 2000, Is the bioavailability index applicable for trace elements in different types of soils?, Chem. Spec. Bioavailab., 12, 117, 10.3184/095422900782775490