Elevated Temperature Wear Behavior of FeCr Slag Coating as an Alternative Coating Material for Caster Rolls
Tóm tắt
The aim of this study is to show that ferrochrome (FeCr) slag, an industrial waste material, can be used as an alternative protective coating material in service conditions for the caster roll surfaces used in the continuous casting line of steelmaking. Atmospheric plasma spray (APS) method was utilized in coating processes. Considering the working conditions of continuous casting production line, the Thermal Barrier Coating (TBC) system was used as a basis for deposition processes. For production of the TBC system, the commercial NiCoCrAlY (Amdry, 45 + 5 µm) coating powder was initially deposited as metallic bond coat layer onto the surface of AISI 316L substrate, and then FeCr slag layer was successfully deposited as the top coating layer. After the deposition of FeCr slag powder, the resulting coating layer was found to have low porosity with a homogeneous microstructure. Dry sliding wear tests were performed under different loads (7N, 10N and 13N) and temperatures (200, 400 and 600°C) using a ball-on-disc test rig with heating unit. At low loads (7N, 10N) and temperatures (200, 400°C), predominantly spallation type abrasion was observed, while at high load and temperatures (13N, 600°C), the formation of tribolayer and delamination were the dominant wear mechanisms on the surface of FeCr slag coatings. According to the test results, it can be said that FeCr slag powder is a suitable candidate as a protective coating material against adhesive wear at elevated temperatures for caster rolls.
Tài liệu tham khảo
Pawlowski, L., The Science and Engineering of Thermal Spray Coatings, Chichester: Wiley, 1995.
Handbook of Thermal Spray Technology, Davis, J.R., Ed., Materials Park, OH: ASM Int., 2004.
Matthews, S. and James, B., J. Therm. Spray Technol., 2010, vol. 19, no. 6, pp. 1267–1276.
Guthrie, R.I.L. and Jonas, J.J., Steel Processing Technology, in ASM Handbook, vol. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, Steiner, R., Ed., Materials Park, OH: ASM Int., pp. 107–125.
Lankford, W., Samways, N., Craven, R., and McGannon, H., The Making, Shaping and Treating of Steel, United States Steel Corp., 1985.
Sanz, A., Surf. Coat. Technol., 2001, vols. 146–147, pp. 55–64.
Lavin, P., Int. Patent WO 98/21379, 1998.
Allcock, B.W. and Lavin, P.A., Surf. Coat. Technol., 2003, vols. 163–164, pp. 62–66.
Yasniy, P., Maruschak, P., Lapusta, Y., Hlado, V., and Baran, D., Mech. Adv. Mater. Struct., 2008, vol. 15, nos. 6–7, pp. 499–507.
Sanz, A., Surf. Coat. Technol., 2004, vols. 177–178, pp. 1–11.
Satoh, Y., Yamamura, T., and Takimoto, T., Kawasaki Steel Tech. Rep., 2001, vol. 45, pp. 42–49.
Berger, L.M., Stahr, C.C., Saaro, S., Thiele, S., Woydt, M., and Kelling, N., Wear, 2009, vol. 267, pp. 954–964.
Sato, Y., Midorikawa, S., Iwashita, Y., Yokogawa, A., and Takano, T., Kawasaki Steel Tech. Rep., 1993, no. 29, pp. 74–82.
Harada, Y. and Shigemura, S., Jpn. Patent JP2006290547, 2006.
Shibata, M., Midorikawa, S., and Kumakawa, M., Jpn. Patent JP10118707, 1998.
Suhara, M., Katayama, Y., and Hirata, K., Jpn. Patent JP5306447, 1993.
Takeda, K., Ito, M., and Takeuchi, S., Pure Appl. Chem., 1990, vol. 62, no. 9, pp. 1773–1782.
Tsuyuki, A., Kitagawa, K., and Tsukasaki, K., Jpn. Patent JP11158669, 1999.
Liu, C., Liu, L., Tan, K., Zhang, L., Tang, K., and Shi, X., Ceram. Int., 2016, vol. 42, pp. 734–742.
Huang, S.H., Peng, B., Yang, Z.H., Chai, L.Y., Xu, Y.Z., and Su, C.Q., Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 756–764.
Lind, B.B., Fällman, A.M., and Larsson, L.B., Waste Manage., 2001, vol. 21, pp. 255–264.
Zelić, J., Cem. Concr. Res., 2005, vol. 35, pp. 2340–2349.
Oge, M., Kucuk, Y., Gok, M.S., and Karaoglanli, A.C., Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 2283–2298. https://doi.org/10.1111/ijac.13273
Kucuk, Y., Oge, M., Gok, M.S., and Karaoglanli, A.C., Int. J. Appl. Ceram. Technol., 2018, vol. 15, p. 1240.
Haga, T., Takahashi, K., Ikawa, M., and Watari, H., J. Mater. Process. Technol., 2003, vol. 140, nos. 1–3, pp. 610–615.
Sahoo, S., J. Metall., 2016, vol. 2016, article ID 1038950. https://doi.org/10.1155/2016/1038950
Kittaka, S., Uehara, M., Sato, T., and Higashi, H., Nippon Steel Tech. Rep., 2000, no. 82, pp. 65–70.
Padture, N.P., Gell, M., and Jordan, E.H., Science, 2002, vol. 296, pp. 280–284.
Ndlovu, S., Simate, G.S., and Matinde, E., Waste Production and Utilization in the Metal Extraction Industry, Boca Raton, FL: CRC Press, 2017.
Sahu, N., Biswas, A., and Kapure, G.U., Miner. Process. Extr. Metall. Rev., 2016, vol. 37, no. 4, p. 211.
Ramesh, S., Yaghoubi, A., Sara Lee, K.Y., Christopher, C.K.M., Purbolaksono, J., Hamdi, M., and Hassan, M.A., J. Mech. Behav. Mater.,2013, vol. 25, pp. 63–69.
Von Helden, S., Malzbender, J., and Krüger, M., Ceram. Int., 2019, vol. 45, pp. 10765–10775.
Rynio, C., Hattendorf, H., Klöwer, J., and Eggeler, G., Wear, 2014, vol. 315, nos. 1–2, pp. 1–10.
Conceição, L.D. and D’Oliveira, A.S.C.M., Surf. Coat. Technol., 2016, vol. 288, pp. 69–78.
Wang, Y. and Hsu, S.M., Wear, 1996, vol. 195, pp. 90–99.
Liu, C.X. and Sun, J.L., J. Alloys Compd., 2018, vol. 743, pp. 268–273.
Shyu, R.F. and Ho, C.T., J. Mater. Process. Technol., 2006, vol. 171, pp. 411–416.
Thangarasu, A., Murugan, N., Dinaharan, I., and Vijay, S.J., Arch. Civ. Mech. Eng., 2015, vol. 15, pp. 324–334.
Ding, Y. and Rieger, N.F., Wear, 2003, vol. 254, no. 12, pp. 1307–1317.
Ding, Y. and Gear, J.A., Wear, 2009, vol. 267, no. 5, pp. 1181–1190.
Stachowiak, G.W. and Batchelor, A.W., Engineering Tribology, Elsevier, 2014.