Các yếu tố có thứ tự hữu hạn cho hệ thống Thue hữu hạn giảm trọng số và hội tụ

Acta Informatica - Tập 25 - Trang 573-591 - 1988
Paliath Narendran1, Friedrich Otto2
1Research and Development Center, General Electric Company, Schenectady, USA
2Department of Computer Science, State University of New York, Albany, USA

Tóm tắt

Các vấn đề sau đây được chỉ ra là có thể quyết định trong thời gian đa thức cho các hệ thống Thue hữu hạn, giảm trọng số và hội tụ T: Chứng minh của kết quả cuối cùng khai thác một thuộc tính của các nhóm sinh hữu hạn thực tế tự do, bao gồm tất cả các nhóm có thể được trình bày bởi các hệ thống Thue hữu hạn, giảm trọng số và hội tụ.

Từ khóa

#Hệ thống Thue #quyết định #thời gian đa thức #nhóm sinh hiệu hạn #nhóm tự do.

Tài liệu tham khảo

Berstel, J.: Congruences plus que parfaites et langages algebriques; Seminaire d'Informatique Theorique; Institut de Programmation 1976–77, pp. 123–147 Book, R.V.: Confluent and other types of Thue systems. J. Assoc. Comput. Mach. 29, 171–182 (1982) Book, R.V.: When is a monoid a group? The Church-Rosser case is tractable. Theor. Comput. Science 18, 325–331 (1982) Book, R.V.: Thue systems and the Church-Rosser property: replacement systems, specification of formal languages, and presentations of monoids. In: Cummings, L. (ed.) Combinatorics on words: progress and perspectives, pp. 1–38. Don Mills, Ontario: Academic Press (Canada) 1983 Book, R.V.: Thue systems as rewriting systems. J. Symbolic Comput. 3, 39–68 (1987) Cochet, Y., Nivat, M.: Une generalization des ensembles de Dyck. Isr. J. Math. 9, 389–395 (1971) Diekert, V.: Some remarks on Church-Rosser Thue presentations. In: Proceedings of the 4th Symposium on Theoretical Aspects of Computer Science, Passau. (Lect. Notes Comput. Sci., vol. 247, pp. 272–285). Berlin Heidelberg New York: Springer 1987 Diekert, V.: Some properties of weight-reducing presentations; Technical Report TUM-18710, Institut für Informatik, Technische Universität München (1987) Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math. 81, 449–457 (1985) Kapur, D., Narendran, P.: The Knuth-Bendix completion procedure and Thue systems. SIAM J. Comput. 14, 1052–1072 (1985) Lallement, G.: On monoids presented by a single relation. J. Algebra 32, 370–388 (1974) Lallement, G.: Semigroups and Combinatorial Applications. New York Chichester Brisbane Toronto: John Wiley & Sons 1979 Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Berlin Heidelberg New York: Springer 1977 Madiener, K., Otto, F.: Groups presented by certain classes of finite length-reducing string-rewriting systems. In: Lescanne, P. (ed.). Rewriting techniques and applications. (Lect. Notes Comput. Sci., vol. 256, pp. 133–144). Berlin Heidelberg New York: Springer 1987 Madlener, K., Otto, F.: On groups having finite monadic Church-Rosser presentations. In: Proceedings of the Oberwolfach Conference on Semigroups, 1986 (to appear) Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory. 2nd revised Edn. New York: Dover 1976 Markov, A.: Impossibility of algorithms for recognizing some properties of associative systems. Dokl. Akad. Nauk SSSR 77, 953–956 (1951) Martin, U.: How to choose the weights in the Knuth-Bendix ordering. In: Lescanne, P. (ed.). Rewriting techniques and applications. (Lect. Notes Comput. Sci., vol. 256, pp. 42–53). Berlin Heidelberg New York: Springer 1987 Mostowski, A.: Review of [17] Impossibility of algorithms for recognizing some properties of associative systems. Dokl. Akad. Nauk SSSR 77, 953–956 (1951); J. Symbolic Logic 17, 151–152 (1952) Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages. J. Comput. System Sci. 26, 295–310 (1983) Narendran, P., Otto, F., Winklmann, K.: The uniform conjugacy problem for finite Church-Rosser Thue systems is NP-complete. Inf. Control 63, 58–66 (1984) Nivat, M., (with Benois, M.): Congruences parfaites et quasi-parfaites; Seminaire Dubreil, 25e Annee, 1971–72, Algebre, Fasc. 1, Exp. No. 7, 9pp., Secretariat Mathematique, Paris, 1973 Otto, F.: Elements of finite order for finite monadic Church-Rosser Thue systems. Trans. Am. Math. Soc. 291, 629–637 (1985) Otto, F.: On deciding whether a monoid is a free monoid or is a group. Acta Informatica 23, 99–110 (1986) Zhang, L.X.: An efficient algorithm to decide whether a monoid presented by a regular Church-Rosser Thue system is a group. Theor. Comput. Sci. (to appear)