Các Hàm Lọc Được Sử Dụng Để Thực Hiện Độ Trễ Nhóm Âm Tính Cơ Bản

Julia Nako1, Costas Psychalinos1, Brent J. Maundy2, Ahmed S. Elwakil2,3,4
1Department of Physics, Electronics Laboratory, University of Patras, Rio, Patras, Greece
2Department of Electrical and Software Engineering, University of Calgary, Alberta, Canada
3Nanoelectronics Integrated Systems Center (NISC), Nile University, Giza, Egypt
4Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates

Tóm tắt

Một nghiên cứu lý thuyết về hành vi của một số hàm cơ bản bậc nhất và bậc hai, phù hợp để thực hiện độ trễ nhóm âm tính, được tiến hành trong công trình này. Khi cả phản hồi về khuếch đại và pha đều được xem xét đồng thời, những suy diễn quan trọng liên quan đến băng thông hoạt động thực tế được rút ra kèm theo các mẹo thiết kế hữu ích. Lý thuyết trình bày được hỗ trợ bởi kết quả mô phỏng và thực nghiệm thu được thông qua việc sử dụng các cấu trúc lọc active-RC điển hình, cũng như từ một thiết bị mảng tương tự có thể lập trình được.

Từ khóa

#độ trễ âm tính #hàm lọc #băng thông #thiết kế lọc #nghiên cứu lý thuyết

Tài liệu tham khảo

M.T. Abuelmaatti, Z.J. Khalifa, A new CFOA-based negative group delay cascadable circuit. Analog Integr. Circuits Signal Process. 95, 351–355 (2018). https://doi.org/10.1007/s10470-018-1172-y Anadigm: AN231E04 dpASP: The AN231E04 dpASP Dynamically Reconfigurable Analog Signal Processor. https://www.anadigm.com/an231e04.asp Analog Devices: AD844 60 MHz 2000 V/us Monolithic Op Amp with Quad Low Noise, Data Sheet, Rev. G. https://www.analog.com/en/products/ad844.html. Accessed 5 Sept 2023 O. Baloglu, O. Cicekoglu, N. Herencsar, OTA-C signal delay compensation circuit for transimpedance-mode audio signal processing systems. Integration 90, 205–213 (2023). https://doi.org/10.1016/j.vlsi.2023.02.005 O. Baloglu, O. Cicekoglu, N. Herencsar, Single CFOA-based active negative group delay circuits for signal anticipation. Eng. Sci. Technolo. Int. J. 48, 101590 (2023). https://doi.org/10.1016/j.jestch.2023.101590 R. Banchuin, On the fractional domain analysis of negative group delay circuits. Int. J. Circuit Theory Appl. (2024). https://doi.org/10.1002/cta.3819 P.Y. Chou, J.F. Chien, K.S. Chen, Y.T. Huang, C.C. Chen, C. Chan, Anticipation and negative group delay in a retina. Phys. Rev. E 103(2), L020401 (2021). https://doi.org/10.1103/physreve.103.l020401 S. Gupta, D. Bhaskar, R. Senani, A. Singh, Inverse active filters employing CFOAs. Electr. Eng. 91, 23–26 (2009). https://doi.org/10.1007/s00202-009-0112-3 A.M. Hassanein, A.H. Madian, A.G. Radwan, L.A. Said, On the design flow of the fractional-order analog filters between FPAA implementation and circuit realization. IEEE Access 11, 29199–29214 (2023). https://doi.org/10.1109/access.2023.3260093 S. Kapoulea, C. Psychalinos, A.S. Elwakil, Power law filters: a new class of fractional-order filters without a fractional-order Laplacian operator. AEU Int. J. Electron. Commun. 129, 153537 (2021). https://doi.org/10.1016/j.aeue.2020.153537 M. Kitano, T. Nakanishi, K. Sugiyama, Negative group delay and superluminal propagation: an electronic circuit approach. IEEE J. Sel. Top. Quantum Electron. 9(1), 43–51 (2003). https://doi.org/10.1109/jstqe.2002.807979 B. Maundy, A. Elwakil, C. Psychalinos, Systematic design of negative group delay circuits. AEU Int. J. Electron. Commun. (2023). https://doi.org/10.1016/j.aeue.2023.155060 M.W. Mitchell, R.Y. Chiao, Negative group delay and ‘fronts’ in a causal system: An experiment with very low frequency bandpass amplifiers. Phys. Lett. A 230(3–4), 133–138 (1997). https://doi.org/10.1016/s0375-9601(97)00244-2 M.W. Mitchell, R.Y. Chiao, Causality and negative group delays in a simple bandpass amplifier. Am. J. Phys. 66(1), 14–19 (1998). https://doi.org/10.1119/1.18813 J. Munday, R. Henderson, Superluminal time advance of a complex audio signal. Appl. Phys. Lett. 85(3), 503–505 (2004). https://doi.org/10.1063/1.1773926 T. Nakanishi, K. Sugiyama, M. Kitano, Demonstration of negative group delays in a simple electronic circuit. Am. J. Phys. 70(11), 1117–1121 (2002). https://doi.org/10.1119/1.1503378 C. Psychalinos, S. Minaei, A. Yesil, First-order inverse filters: implementations using a single voltage conveyor and potential applications. Int. J. Circuit Theory Appl. 50(10), 3704–3714 (2022). https://doi.org/10.1002/cta.3346 T. Pyragiene, K. Pyragas, Anticipatory synchronization via low-dimensional filters. Phys. Lett. A 381(22), 1893–1898 (2017). https://doi.org/10.1016/j.physleta.2017.04.005 T. Pyragiene, K. Pyragas, Design of a negative group delay filter via reservoir computing approach: real-time prediction of chaotic signals. Phys. Lett. A 383(25), 3088–3094 (2019). https://doi.org/10.1016/j.physleta.2019.07.015 R. Randriatsiferana, Y. Gan, F. Wan, W. Rahajandraibe, R. Vauché, N.M. Murad, B. Ravelo, Study and experimentation of a 6-dB attenuation low-pass NGD circuit. Analog Integr. Circuits Signal Process. (2021). https://doi.org/10.1007/s10470-021-01826-x B. Ravelo, Methodology of elementary negative group delay active topologies identification. IET Circuits Devices Syst. 7(3), 105–113 (2013). https://doi.org/10.1049/iet-cds.2012.0317 B. Ravelo, Synthesis of RF circuits with negative time delay by using LNA. Adv. Electromag. 2(1), 44–54 (2013). https://doi.org/10.7716/aem.v2i1.89 B. Ravelo, Similitude between the NGD function and filter gain behaviours. Int. J. Circuit Theory Appl. 42(10), 1016–1032 (2014). https://doi.org/10.1002/cta.1902 B. Ravelo, First-order low-pass negative group delay passive topology. Electron. Lett. 52(2), 124–126 (2016). https://doi.org/10.1049/el.2015.2856 B. Ravelo, H. Bilal, S. Rakotonandrasana, M. Guerin, F. Haddad, S. Ngoho, W. Rahajandraibe, Transient characterization of new low-pass negative group delay RC-network. IEEE Trans. Circuits Syst. II Express Briefs (2023). https://doi.org/10.1109/tcsii.2023.3300124 B. Ravelo, A. Pérennec, M. Le Roy, Y.G. Boucher, Active microwave circuit with negative group delay. IEEE Microw. Wirel. Comp. Lett. 17(12), 861–863 (2007). https://doi.org/10.1109/lmwc.2007.910489 R. Senani, D.R. Bhaskar, A. Raj, Inverse analog filters: history, progress and unresolved issues. Electronics 11(6), 841 (2022). https://doi.org/10.3390/electronics11060841 H. Shen, Z. Wang, A circuit principle and simulation test for negative group delay. Int. J. Adv. Netw. Monit. Controls 7(2), 46–57 (2022). https://doi.org/10.2478/ijanmc-2022-0015 D. Solli, R. Chiao, J. Hickmann, Superluminal effects and negative group delays in electronics, and their applications. Phys. Rev. E 66(5), 056601 (2002). https://doi.org/10.1103/physreve.66.056601 H.U. Voss, A delayed-feedback filter with negative group delay. Chaos Interdiscip. J. Nonlinear Sci. (2018). https://doi.org/10.1063/1.5052497 F. Wan, L. Wang, Q. Ji, B. Ravelo, Canonical transfer function of band-pass NGD circuit. IET Circuits Devices Syst. 13(2), 125–130 (2019). https://doi.org/10.1049/iet-cds.2018.5214 J.K. Xiao, Q.F. Wang, J.G. Ma, Negative group delay circuits and applications: feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers. IEEE Microw. Mag. 22(2), 16–32 (2021). https://doi.org/10.1109/mmm.2020.3035862 A. Yuan, S. Fang, Z. Wang, H. Liu, A novel multifunctional negative group delay circuit for realizing band-pass, high-pass and low-pass. Electronics 10(14), 1742 (2021). https://doi.org/10.3390/electronics10141742