Elemental mercury capture from industrial gas emissions using sulfides and selenides: a review
Tóm tắt
Mercury emission from industrial activities has become a major environmental health concern, because mercury is one of the most toxic metals encountered in the environment. Elemental mercury is the dominant Hg species in gas streams. Adsorption is regarded as a practical technique for Hg0 removal, for which developing efficient and economic adsorbents are needed. Chalcogenides have recently gained increasing research interest owing to their high binding affinity for Hg0. Chalcogen-based adsorbents include S-modified adsorbents, H2S- and SO2-activated adsorbents, polysulfide chalcogels, mineral sulfides and metal selenides. This article reviews chalcogen-based adsorbents for Hg0 capture from gas streams, with focus on removal performances, mechanisms, advantages and disadvantages. Results show that S modification, and H2S and SO2 activation generate a great variety of active sulfur species on the adsorbent surface, resulting in enhanced Hg0 removal activity. Sulfur species include elemental sulfur, sulfide, thiophene and sulfate. Nonetheless, removal efficiency decreases to some extent due to the presence of acidic flue gas components and steam. On the other hand, mineral sulfides and metal selenides exhibit outstanding Hg0 removal performances with fast adsorption rate, high mercury capacity and excellent resistance to SO2 and H2O. Yet most mineral sulfides and metal selenides perform well below 100 °C, which might limit industrial applications.
Tài liệu tham khảo
Ahmed S, Brockgreitens J, Xu K, Abbas A (2017) A nanoselenium sponge for instantaneous mercury removal to undetectable levels. Adv Funct Mater 27:1606572. https://doi.org/10.1002/adfm.201606572
Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. Rev Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x
Anastopoulos I, Robalds A, Tran HN, Mitrogiannis D, Giannakoudakis DA, Hosseini-Bandegharaei A, Dotto GL (2019) Removal of heavy metals by leaves-derived biosorbents. Environ Chem Lett 17:755–766. https://doi.org/10.1007/s10311-018-00829-x
Balajii M, Niju S (2019) Biochar-derived heterogeneous catalysts for biodiesel production. Environ Chem Lett 17:1447–1469. https://doi.org/10.1007/s10311-019-00885-x
Bejarano CA, Jia CQ, Chung KH (2001) A study on carbothermal reduction of sulfur dioxide to elemental sulfur using oilsands fluid coke. Environ Sci Technol 35:800–804. https://doi.org/10.1021/es001581v
Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:1780–1780. https://doi.org/10.1021/es992007q
Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK (2000) Mercury in natural gas streams: a review of materials and processes for abatement and remediation. J Hazard Mater 382:121036. https://doi.org/10.1016/j.jhazmat.2019.121036
Charvát P, Klimeš L, Pospíšil J, Klemeš JJ, Varbanov PS (2020) An overview of mercury emissions in the energy industry—a step to mercury footprint assessment. J Clean Prod 267:122087. https://doi.org/10.1016/j.jclepro.2020.122087
Chen H, Huo Q, Wang Y, Han LN, Lei Z, Wang JC, Bao W, Chang LP (2020) Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired fue gas. Fuel Process Technol 206:106467. https://doi.org/10.1016/j.fuproc.2020.106467
Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a La-ICPMS study. Geochim Cosmochim Acta 73:4761–4791. https://doi.org/10.1016/j.gca.2009.05.045
Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8
Edathil AA, Banat F, Reddy KSK, Srinivasakannan C (2018) Alginate-pyrolyzed porous carbon as efficient gas phase elemental mercury scavenger. J Nat Sci Eng 55:165–173. https://doi.org/10.1016/j.jngse.2018.04.034
Eftekhari A (2017) Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl Mater Today 8:1–17. https://doi.org/10.1016/j.apmt.2017.01.006
Evans HT, Konnert JA (1976) Crystal structure refinement of covellite. Am Mineral 61:996–1000
Fang Y, Cao X, Feng W, Zhou W, Johnson D, Huang Y (2020) High catalytic hydrolysis of microcystins on pyrite surface. Environ Chem Lett 18:483–487. https://doi.org/10.1007/s10311-019-00948-z
Feng W, Jia CQ (2005) Influence of O2 and H2O on carbothermal reduction of SO2 by oil-sand fluid coke. Environ Sci Technol 39:9710–9714. https://doi.org/10.1021/es051297+
Feng W, Borguet E, Vidic RD (2006a) Sulfurization of carbon surface for vapor phase mercury removal-I: effect of temperature and sulfurization protocol. Carbon 44:2990–2997. https://doi.org/10.1016/j.carbon.2006.05.019
Feng W, Borguet E, Vidic RD (2006b) Sulfurization of carbon surface for vapor phase mercury removal-II: sulfur forms and mercury uptake. Carbon 44:2998–3004. https://doi.org/10.1016/j.carbon.2006.05.053
Feng W, Kwon S, Feng X, Borguer E, Vidic RD (2006) Sulfur impregnation on activated carbon fibers through H2S oxidation for vapor phase mercury removal. J Environ Eng 132:292–300. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:3(292)
Galbreath KC, Zygarlicke CJ (1996) Mercury speciation in coal combustion and gasification flue gases. Environ Sci Technol 30:2421–2426. https://doi.org/10.1021/es950935t
Galbreath KC, Zygarlicke CJ (2000) Mercury transformations in coal combustion flue gas. Fuel Process Technol 65:289–310. https://doi.org/10.1016/S0378-3820(99)00102-2
Graydon JW, Zhang X, Kirk DW, Jia CQ (2009) Sorption and stability of mercury on activated carbon for emission control. J Hazard Mater 168:978–982. https://doi.org/10.1016/j.jhazmat.2009.02.118
Gunarathne V, Ashiq A, Ramanayaka S, Wijekoon P, Vithanage M (2019) Biochar from municipal solid waste for resource recovery and pollution remediation. Environ Chem Lett 17:1225–1235. https://doi.org/10.1007/s10311-019-00866-0
Han X, Chen H, Liu YX, Pan J (2020) Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. J Nat Gas Sci Eng 73:103068. https://doi.org/10.1016/j.jngse.2019.103068
He P, Zhao X, Luo F, Zhang Y, Wei J, Xu T, Wu J, Chen NC (2020) Magnetically recyclable Fe3O4 doped flower-like MoS2: Efficient removal of elemental mercury. Fuel 282:118728. https://doi.org/10.1016/j.fuel.2020.118728
Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 10:95–115. https://doi.org/10.1016/0169-1368(95)00009-7
Hong Y, Duan YF, Zhun C, Zhou Q, She M, Du H (2016) Development of coconut shell activated carbon with sulfur impregnation for vapor phase mercury removal. J Chem Eng Jpn 49:385–389. https://doi.org/10.1252/jcej.14we400
Hong Q, Xu HM, Liao Y, Huang W, Qu Z, Yan NQ (2020) Insight into the interfacial stability and reaction mechanism between gaseous mercury and chalcogen-based sorbents in SO2-containing flue gas. J Coll Interf Sci 577:503–511. https://doi.org/10.1016/j.jcis.2020.05.072
Hong Q, Xu HM, Yuan Y, Shen Y, Wang Y, Huang W, Qu Z, Yan NQ (2020) Gaseous mercury capture using supported CuSx on layered double hydroxides from SO2-rich flue gas. Chem Eng J 400:125963. https://doi.org/10.1016/j.cej.2020.125963
Hsi H, Tsai C, Kuo T, Chiang C (2011) Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation. Bioresour Technol 102:7470–7477. https://doi.org/10.1016/j.biortech.2011.05.036
Hsi H, Tsai C, Lin K (2014) Impact of surface functional groups, water vapor, and flue gas components on mercury adsorption and oxidation by sulfur-impregnated activated carbons. Energy Fuels 28:3300–3309. https://doi.org/10.1021/ef500075d
Huang Y, Li B, Liu DJ, Xie X, Zhang H, Sun H, Hu X, Zhang S (2020) Fundamental advances in biomass autothermal/oxidative pyrolysis: a review. ACS Sustain Chem Eng 8:11888–11905. https://doi.org/10.1021/acssuschemeng.0c04196
Jampaiah D, Chalkidis A, Sabri YM, Mayes ELH, Reddy BM, Bhargava SK (2019) Low-temperature elemental mercury removal over TiO2 nanorods-supported MnOx-FeOx-CrOx. Catal Today 324:174–182. https://doi.org/10.1016/j.cattod.2018.11.049
Jia F, Wang Q, Wu J, Li Y, Song S (2017) Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. ACS Sustain Chem Eng 5:7410–7419. https://doi.org/10.1021/acssuschemeng.7b01880
Jia T, Wu J, Song J, Liu Q, Wang J, Qi YF, He P, Qi XM, Yang L, Zhao P (2020) In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity. Chem Eng J 396:125258. https://doi.org/10.1016/j.cej.2020.125258
Khan MAK, Wang F (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28:1567–1577. https://doi.org/10.1897/08-375.1
Kołątaj K, Krajczewski J, Kudelski A (2020) Plasmonic nanoparticles for environmental analysis. Environ Chem Lett 18:529–542. https://doi.org/10.1007/s10311-019-00962-1
Kong L, Zou S, Mei J, Geng Y, Zhao H, Yang SJ (2018) Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg0 from nonferrous metal smelting flue gas: performance and reaction mechanism. Environ Sci Technol 52:10003–10010. https://doi.org/10.1021/acs.est.8b03484
Korpiel JA, Vidic RD (1997) Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ Sci Technol 31:2319–2325. https://doi.org/10.1021/es9609260
Kosheleva RI, Mitropoulos AC, Kyzas G (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17:429–438. https://doi.org/10.1007/s10311-018-0817-5
Kumar A, Thakur PR, Sharma G, Naushad M, Rana A, Mola GT, Stadler FJ (2019) Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications. Environ Chem Lett 17:655–682. https://doi.org/10.1007/s10311-018-0814-8
Kwon S, Vidic RD (2000) Evaluation of two sulfur impregnation methods on activated carbon and bentonite for the production of elemental mercury sorbents. Environ Eng Sci 17:303–313. https://doi.org/10.1089/ees.2000.17.303
Li HL, Zhu L, Wang J, Li L, Shih K (2016) Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environ Sci Technol 50:9551–9557. https://doi.org/10.1021/acs.est.6b02115
Li HL, Feng S, Liu Y, Shih K (2017) Binding of mercury species and typical flue gas components on ZnS (110). Energy Fuels 31:5355–5362. https://doi.org/10.1021/acs.energyfuels.7b00213
Li HL, Zhu L, Wang J, Li L, Lee PH, Feng Y, Shih K (2017) Effect of nitrogen oxides on elemental mercury removal by nanosized mineral sulfide. Environ Sci Technol 51:8530–8536. https://doi.org/10.1021/acs.est.7b00224
Li HL, Zhu W, Yang JP, Zhang M, Zhao J, Qu W (2018) Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants. Fuel 232:476–484. https://doi.org/10.1016/j.fuel.2018.06.002
Li N, Wei H, Duan YF, Tang H, Zhao SL, Hu P, Ren S (2018) Experimental study on mercury adsorption and adsorbent regeneration of sulfur-loaded activated carbon. Energy Fuels 32:11023–11029. https://doi.org/10.1021/acs.energyfuels.8b02527
Li HL, Feng S, Yang Z, Yang J, Liu S, Hu Y, Zhong L, Qu W (2019) Density functional theory study of mercury adsorption on CuS surface: effect of typical flue gas components. Energy Fuels 33:1540–1546. https://doi.org/10.1021/acs.energyfuels.8b03585
Li HL, Zu H, Yang Z, Yang JP, Xu H, Qu WQ (2021) The adsorption mechanisms of Hg0 on marcasite-type metal selenides: the influences of metal-terminated site. Chem Eng J 406:126723. https://doi.org/10.1016/j.cej.2020.126723
Liao Y, Chen D, Zou S, Xiong S, Xiao X, Dang H, Chen T, Yang SJ (2016) Recyclable naturally derived magnetic pyrrhotite for elemental mercury recovery from flue gas. Environ Sci Technol 50:10562–10569. https://doi.org/10.1021/acs.est.6b03288
Liao Y, Xia Y, Zou S, Liu P, Liang XL, Yang SJ (2017) In situ emergency disposal of liquid mercury leakage by Fe-containing sphalerite: performance and reaction mechanism. Ind Eng Chem Res 56:153–160. https://doi.org/10.1021/acs.iecr.6b01994
Liu YX, Wang Y (2018a) Elemental mercury removal from flue gas using heat and Co2+/Fe2+ coactivated oxone oxidation system. Chem Eng J 348:464–475
Liu YX, Wang Y (2018b) Removal of Hg0 from simulated flue gas by ultraviolet light/heat/persulfate process in an UV-impinging stream reactor. Energy Fuels 32:12416–12425. https://doi.org/10.1016/j.cej.2018.04.171
Liu YX, Wang Y (2019) Gaseous elemental mercury removal using VUV and heat coactivation of oxone/H2O/O2 in a VUV-spraying reactor. Fuel 243:352–361. https://doi.org/10.1016/j.fuel.2019.01.130
Liu W, Vidic RD, Brown TD (2000) Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environ Sci Technol 34:154–159. https://doi.org/10.1021/es990315i
Liu YX, Zhou J, Zhang Y, Pan J, Wang Q, Zhang J (2015) Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor. Fuel 145:180–188. https://doi.org/10.1016/j.fuel.2014.12.084
Liu DJ, Zhou WG, Wu J (2016a) CeO2-La2O3/ZSM-5 sorbents for high-temperature H2S removal. Korean J Chem Eng 33:1837–1845. https://doi.org/10.1007/s11814-016-0013-x
Liu DJ, Zhou WG, Wu J (2016b) CuO-CeO2/ZSM-5 composites for reactive adsorption of hydrogen sulfide at high temperature. Can J Chem Eng 94:2276–2281. https://doi.org/10.1002/cjce.22613
Liu DJ, Zhou WG, Wu J (2016c) Perovskite LaMnO3/ZSM-5 composites for H2S reactive adsorption at high temperature. Adsorption 22:327–334. https://doi.org/10.1007/s10450-016-9780-2
Liu DJ, Lu C, Wu J (2018a) CuO/g-C3N4 nanocomposite for elemental mercury capture at low temperature. J Nanopart Res 20:227. https://doi.org/10.1007/s11051-018-4374-4
Liu DJ, Lu C, Wu J (2018b) Gaseous mercury capture by copper-activated nanoporous carbon nitride. Energy Fuels 32:8287–8295. https://doi.org/10.1021/acs.energyfuels.8b01708
Liu P, Ptacek CJ, Elena KMA, Blowes DW, Gould WD, Finfrock YZ, Wang AO, Landis RC (2018c) Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy. J Hazard Mater 347:114–122. https://doi.org/10.1016/j.jhazmat.2017.12.051
Liu Z, Yang W, Xu W, Liu YX (2018d) Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chem Eng J 339:468–478. https://doi.org/10.1016/j.cej.2018.01.148
Liu DJ, Seeburg D, Kreft S, Bindig R, Hartmann I, Schneider D, Enke D, Wohlrab S (2019a) Rice husk derived porous silica as support for Pd and CeO2 for low temperature catalytic methane combustion. Catalysts 9:26. https://doi.org/10.3390/catal9010026
Liu DJ, Wang Q, Wu J, Liu YX (2019b) A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas. Environ Chem Lett 17:259–276. https://doi.org/10.1007/s10311-018-0792-x
Liu DJ, Zhang Z, Wu J (2019c) Elemental mercury removal by MnO2 nanoparticle decorated carbon nitride nanosheet. Energy Fuels 33:3089–3097. https://doi.org/10.1021/acs.energyfuels.9b00149
Liu DJ, Zhou WG, Wu J (2019d) Kinetic behavior of elemental mercury sorption on cerium- and lanthanum-based composite oxides. Surf Rev Lett 26:1850141. https://doi.org/10.1142/S0218625X1850141X
Liu W, Xu HM, Guo Y, Yuan Y, Liao Y, Qu Z, Yan NQ (2019e) Immobilization of elemental mercury in non-ferrous metal smelting gas using ZnSe1-xSx nanoparticles. Fuel 254:115641. https://doi.org/10.1016/j.fuel.2019.115641
Liu W, Xu HM, Liao Y, Quan Z, Li S, Zhao S, Qu Z, Yan NQ (2019f) Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel 235:847–854. https://doi.org/10.1016/j.fuel.2018.08.062
Liu Z, Adewuyi YG, Shi S, Chen H, Li Y, Liu DJ, Liu YX (2019g) Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chem Eng J 366:41–49. https://doi.org/10.1016/j.cej.2019.02.025
Liu DJ, Li B, Wu J, Liu YX (2020a) Photocatalytic oxidation removal of elemental mercury from flue gas. Rev Environ Chem Lett 18:417–431. https://doi.org/10.1007/s10311-019-00957-y
Liu DJ, Li B, Wu J, Liu YX (2020b) Sorbents for hydrogen sulfide capture from biogas at low temperature: a review. Environ Chem Lett 18:417–431. https://doi.org/10.1007/s10311-019-00925-6
Liu DJ, Li CE, Wu J, Liu YX (2020c) Novel carbon-based sorbents for elemental mercury removal from gas streams: a review. Chem Eng J 391:123514. https://doi.org/10.1016/j.cej.2019.123514
Liu DJ, Xu W, Liu YX (2020d) Seaweed bio-chars modified with metal chloride for elemental mercury capture from simulated flue gas. Atmos Pollut Res 11:122–130. https://doi.org/10.1016/j.apr.2020.03.006
Liu DJ, Yang LT, Li B, Wu J (2020e) Gaseous mercury removal by graphene-like carbon nitride impregnated with ammonium bromide. Fuel 280:118635. https://doi.org/10.1016/j.fuel.2020.118635
Liu DJ, Zhang Z, Luo F, Wu J (2020f) Elemental mercury capture from simulated flue gas by graphite-phase carbon nitride. Energy Fuels 34:6851–6861. https://doi.org/10.1021/acs.energyfuels.0c00457
Liu DJ, Zhang Z, Wu J, Li CE (2020g) Copper sulfide microsphere for Hg0 capture from flue gas at low temperature. Mater Today Commun 25:101188. https://doi.org/10.1016/j.mtcomm.2020.101188
Liu W, Xu HM, Liao Y, Wang Y, Yan NQ, Qu Z (2020h) Co-doped ZnS with large adsorption capacity for recovering Hg0 from non-ferrous metal smelting gas as a co-benefit of electrostatic demisters. Environ Sci Pollut Res 27:20469–20477. https://doi.org/10.1007/s11356-020-08401-3
Liu X, Liu R, Chen G, Luo X, Lu M (2020i) Natural HgS nanoparticles in sulfide minerals from the Hetai goldfield. Environ Chem Lett 18:941–947. https://doi.org/10.1007/s10311-020-00978-y
Liu YX, Shan Y, Wang Y (2020j) Novel simultaneous removal technology of NO and SO2 using semi-dry microwave activation persulfate system. Environ Sci Technol 54:2031–2042. https://doi.org/10.1021/acs.est.9b07221
Liu Z, Li Z, Xie X, Yang S, Fei J, Li Y, Xu Z, Liu H (2020k) Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range. Environ Sci Technol 54:604–612. https://doi.org/10.1021/acs.est.9b06393
Lu C, Wu J, Liu DJ (2018) Graphitic carbon nitride for elemental mercury capture. Mater Lett 227:308–310. https://doi.org/10.1016/j.matlet.2018.05.081
Ma S, Shim Y, Islam SM, Subrahmanyam KS, Wang P, Li H, Wang S, Yang X, Kanatzidis MG (2014) Efficient Hg vapor capture with polysulfide intercalated layered double hydroxides. Chem Mater 26:5004–5011. https://doi.org/10.1021/cm5020477
Marcia MN (2013) Mercury and health. Science 341:1430. https://doi.org/10.1126/science.1245924
Mei J, Wang C, Kong L, Liu X, Hu Q, Zhao H, Yang SJ (2019) Outstanding performance of recyclable amorphous MoS3 supported on TiO2 for capturing high concentrations of gaseous elemental mercury: mechanism, kinetics, and application. Environ Sci Technol 53:4480–4489. https://doi.org/10.1021/acs.est.9b00464
Mei J, Wang C, Kong L, Sun P, Hu Q, Zhao H, Guo YF, Yang SJ (2020) Remarkable improvement of Ti incorporation on Hg0 capture from smelting flue gas by sulfurated γ-Fe2O3: Performance and mechanism. J Hazard Mater 381:120967. https://doi.org/10.1016/j.jhazmat.2019.120967
Morris EA, Jia CQ, Morita K (2010) Effects of O2 on characteristics of sulfur added to petroleum coke through reaction with SO2. Ind Eng Chem Res 49:12709–12717. https://doi.org/10.1021/ie101388q
Morris EA, Choi R, Jia CQ (2013) Sulfur dioxide as an activating agent for sulfur-impregnated activated carbon produced from dense petroleum coke. J Sulfur Chem 34:358–369. https://doi.org/10.1080/17415993.2012.739622
Mudhoo A, Gautam RK, Ncibi MC, Zhao F, Garg VK, Sillanpää M (2019) Green synthesis, activation and functionalization of adsorbents for dye sequestration. Environ Chem Lett 17:157–193. https://doi.org/10.1007/s10311-018-0784-x
Murphy R, Strongin DR (2009) Surface reactivity of pyrite and related sulfides. Surf Sci Rep 64:1–45. https://doi.org/10.1016/j.surfrep.2008.09.002
Oh Y, Morris CD, Kanatzidis MG (2012) Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J Am Chem Soc 134:14604–14608. https://doi.org/10.1021/ja3061535
Otani Y, Kanaoka C, Emi H, Uchijima I, Nishino H (1988) Removal of mercury vapor from air with sulfur-impregnated adsorbents. Environ Sci Technol 22:708–711. https://doi.org/10.1021/es00171a015
Reddy KSK, Shoaibi AA, Srinivasakannan C (2014) Elemental mercury adsorption on sulfur-impregnated porous carbon: a review. Environ Technol 35:18–26. https://doi.org/10.1080/21622515.2013.804589
Redman DW, Rose MJ, Stevenson KJ (2017) Electrodeposition of amorphous molybdenum chalcogenides from ionic liquids and their activity for the hydrogen evolution reaction. Langmuir 33:9354–9360. https://doi.org/10.1021/acs.langmuir.7b00821
Rumayor M, Lopez-Anton MA, Díaz-Somoano M, Martínez-Tarazona MR (2015) A new approach to mercury speciation in solids using a thermal desorption technique. Fuel 160:525–530. https://doi.org/10.1016/j.fuel.2015.08.028
Saman N, Johari K, Kong H, Mohtar SS, Hassan O, Ali N, Mat H (2019) Enhanced elemental mercury removal by facile sulfurization of agrowaste chars. Chem Eng Res Des 144:198–208. https://doi.org/10.1016/j.cherd.2019.02.010
Shan Y, Yang W, Li Y, Chen H, Liu YX (2019) Removal of elemental mercury from flue gas using microwave/ultrasound-activated Ce–Fe magnetic porous carbon derived from biomass straw. Energy Fuels 33:8394–8402. https://doi.org/10.1021/acs.energyfuels.9b01940
She M, Jia CQ, Duan YF, Zhu C (2020) Influence of different sulfur forms on gas-phase mercury removal by SO2-impregnated porous carbons. Energy Fuels 34:2064–2073. https://doi.org/10.1021/acs.energyfuels.9b03648
Shen FH, Liu J, Dong Y, Wu D (2018) Mercury removal by biomass-derived porous carbon: experimental and theoretical insights into the effect of H2S. Chem Eng J 348:409–415. https://doi.org/10.1016/j.cej.2018.05.019
Shenasa M, Sainkar S, Lichtman D (1986) XPS study of some selected selenium compounds. J Electron Spectrosc Relat Phenom 40:329–337. https://doi.org/10.1016/0368-2048(86)80043-3
Shi M, Luo GQ, Xu Y, Zou R, Zhu H, Hu J, Li X, Yao H (2019) Using H2S plasma to modify activated carbon for elemental mercury removal. Fuel 254:115549. https://doi.org/10.1016/j.fuel.2019.05.132
Subrahmanyam KS, Malliakas CD, Sarma D, Armatas GS, Wu J, Kanatzidis MG (2015) Ion-exchangeable molybdenum sulfide porous chalcogel: gas adsorption and capture of iodine and mercury. J Am Chem Soc 137:13943–13948. https://doi.org/10.1021/jacs.5b09110
Sun R, Luo G, Li X, Tian H, Yao H (2021) Theoretical research on role of sulfur allotropes on activated carbon surface in adsorbing elemental mercury. Chem Eng J 404:126639. https://doi.org/10.1016/j.cej.2020.126639
Tan Z, Qiu J, Zeng H, Liu H, Xiang J (2011) Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90:1471–1475. https://doi.org/10.1016/j.fuel.2010.12.004
Tan Z, Xiang J, Su S, Zeng H, Zhou C, Sun LS, Hu S, Qiu J (2012) Enhanced capture of elemental mercury by bamboo-based sorbents. J Hazard Mater 239:160–166. https://doi.org/10.1016/j.jhazmat.2012.08.053
Tan Z, Niu G, Chen X (2015) Removal of elemental mercury by modified bamboo carbon. Chinese J Chem Eng 23:1875–1880. https://doi.org/10.1016/j.cjche.2015.09.001
Tang H, Dou K, Kaun C, Kuang Q, Yang S (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2:360–364. https://doi.org/10.1039/c3ta13584e
Ubaid KA, Zhang X, Sharma VK, Liu L (2020) Fate and risk of metal sulfide nanoparticles in the environment. Environ Chem Lett 18:97–111. https://doi.org/10.1007/s10311-019-00920-x
Vidic RD, Liu W (1998) Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ Sci Technol 32:531–538. https://doi.org/10.1021/es970630+
Vidic RD, McLaughlin JB (1996) Uptake of elemental mercury vapors by activated carbon. J Air Waste Manag Assoc 46:241–250. https://doi.org/10.1080/10473289.1996.10467458
Vinod TP, Jin X, Kim J (2011) Hexagonal nanoplatelets of CuSe synthesized through facile solution phase reaction. Mater Res Bull 46:340–344. https://doi.org/10.1016/j.materresbull.2010.12.017
Wang Y, Liu YX (2019) Removal of gaseous hydrogen sulfide by a photo-Fenton wet oxidation scrubbing system. Energy Fuels 33:10812–10819. https://doi.org/10.1021/acs.energyfuels.9b02720
Wang T, Liu J, Zhang Y, Zhang H, Chen W, Norris P, Pan WP (2018) Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chem Eng J 331:536–544. https://doi.org/10.1016/j.cej.2017.09.017
Wang Y, Wang Z, Liu YX (2018) Oxidation absorption of gaseous H2S using Fenton-like advanced oxidation systems. Energy Fuels 11:11289–11295. https://doi.org/10.1021/acs.energyfuels.8b02657
Wang S, Yang JP, Yang Z, Zhu W, Li HL, Song J, Guo X (2019) Nanosized copper selenide for mercury removal from indoor air and emergency disposal of liquid mercury leakage. Ind Eng Chem Res 58:21881–21889. https://doi.org/10.1021/acs.iecr.9b05499
Wang Y, Wang Z, Pan J, Liu YX (2019) Removal of hydrogen sulfide using Fenton reagent in a spraying reactor. Fuel 239:70–75. https://doi.org/10.1016/j.fuel.2018.10.143
Wang Y, Xu H, Liu YX (2019) Oxidative absorption of elemental mercury from flue gas using modified Fenton-like wet scrubbing system. Energy Fuels 33:3208–3033. https://doi.org/10.1021/acs.energyfuels.8b04487
Wang C, Hu Q, Zhang Q, Mei J, Yang SJ (2020) Novel synergetic effect of Fe and W in FeWSx/TiO2 on capturing high concentrations of gaseous Hg0 from smelting flue gas: Adsorption kinetics and structure-activity relationship. Ind Eng Chem Res 59:2745–2753. https://doi.org/10.1021/acs.iecr.9b05704
Wang C, Zhang X, Mei J, Hu Q, Yang SJ (2020a) Novel synergistic effect of Fe and Mo in FeMoSx/TiO2 for recovering high concentrations of gaseous Hg0 from smelting flue gas: reaction mechanism and kinetics. Environ Sci Technol 54:586–594. https://doi.org/10.1021/acs.est.9b06142
Wang C, Zhang X, Mei J, Hu Q, Yang SJ (2020b) Outstanding performance of magnetically separable sulfureted MoO3/Fe-Ti spinel for gaseous Hg0 recovery from smelting flue gas: mechanism and adsorption kinetics. Environ Sci Technol 54:7659–7668. https://doi.org/10.1021/acs.est.0c01373
Wang Y, Wang Y, Liu YX (2020) Removal of gaseous hydrogen sulfide using ultraviolet/oxone-induced oxidation scrubbing system. Chem Eng J 393:124740. https://doi.org/10.1016/j.cej.2020.124740
Wang J, Mei J, Wang C, Hu Q, Zhang X, Yang SJ (2021) Outstanding performance of ZnS/TiO2 for the urgent disposal of liquid mercury leakage indoors: novel support effect, reaction mechanism and kinetics. J Hazard Mater 403:123867. https://doi.org/10.1016/j.jhazmat.2020.123867
Wei Y, Yu D, Tong S, Jia CQ (2015) Effects of H2SO4 and O2 on Hg0 uptake capacity and reversibility of sulfur impregnated activated carbon under dynamic conditions. Environ Sci Technol 49:1706–1712. https://doi.org/10.1021/es504178x
Wu SJ, Ozaki M, Uddin MA, Sasaoka E (2008) Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: effect of hydrogen chloride. Fuel 87:467–474. https://doi.org/10.1016/j.fuel.2007.06.016
Xia Y, Wei G, Liang XL, Zhu J, Xian H, Su X, He H, Zhu R (2019) Sequestration of gaseous Hg0 by sphalerite with Fe substitution: performance, mechanism, and structure-activity relationship. J Phys Chem C 123:2828–2836. https://doi.org/10.1021/acs.jpcc.8b08651
Xu HM, Yan NQ, Qu Z, Liu W, Mei J, Huang W (2017) Zhao S (2017a) Gaseous Heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review. Environ Sci Technol 51:8879–8892. https://doi.org/10.1021/acs.est.6b06079
Xu HM, Yuan Y, Liao Y, Xie J, Qu Z, Shangguan W, Yan N (2017) [MoS4]2- cluster bridges in Co-Fe layered double hydroxides for mercury uptake from S-Hg mixed flue gas. Environ Sci Technol 51:10109–10116. https://doi.org/10.1021/acs.est.7b02537
Xu W, Hussain A, Liu YX (2018) A Review on modification methods of adsorbents for elemental mercury from flue gas. Chem Eng J 346:692–711. https://doi.org/10.1016/j.cej.2018.03.049
Yang D, Chen Y, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92. https://doi.org/10.1139/A08-001
Yang W, Liu YX, Wang Q, Pan J (2017) Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181. https://doi.org/10.1016/j.cej.2017.05.106
Yang W, Hussain A, Zhang J, Liu YX (2018) Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent. Chem Eng J 341:483–494. https://doi.org/10.1016/j.cej.2018.02.023
Yang W, Xu W, Liu Z, Liu YX (2018) Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent. Fuel 14:196–206. https://doi.org/10.1016/j.fuel.2017.11.004
Yang Y, Liu J, Liu F, Wang Z, Miao S (2018) Molecular-level insights into mercury removal mechanism by pyrite. J Hazard Mater 344:104–112. https://doi.org/10.1016/j.jhazmat.2017.10.011
Yang Z, Li HL, Feng S, Li P, Liao C, Liu X, Zhao J, Yang JP, Lee PH, Shih K (2018) Multiform sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal-combustion flue gas. Langmuir 34:8739–8749. https://doi.org/10.1021/acs.langmuir.8b01181
Yang Z, Li HL, Liao C, Zhao J, Feng S, Li P, Liu X, Yang JP, Shih K (2018) Magnetic rattle-type Fe3O4@CuS nanoparticles as recyclable sorbents for mercury capture from coal combustion flue gas. ACS Appl Nano Mater 1:4726–4736. https://doi.org/10.1021/acsanm.8b00948
Yang JP, Zhu W, Qu WQ, Yang Z, Wang J, Zhang M, Li HL (2019) Selenium functionalized metal-organic framework MIL-101 for efficient and permanent sequestration of mercury. Environ Sci Technol 53:2260–2268. https://doi.org/10.1021/acs.est.8b06321
Yang W, Adewuyi YG, Hussain A, Liu YX (2019) Recent developments on gas-solid heterogeneous oxidation removal of elemental mercury from flue gas. Environ Chem Lett 17:19–47. https://doi.org/10.1007/s10311-018-0771-2
Yang W, Li Y, Shi S, Chen H, Shan Y, Liu YX (2019) Mercury removal from flue gas by magnetic iron-copper oxide modified porous char derived from biomass materials. Fuel 256:115977. https://doi.org/10.1016/j.fuel.2019.115977
Yang Z, Li HL, Qu WQ, Zhang M, Feng Y, Zhao J, Yang JP, Shih K (2019) Role of sulfur trioxide (SO3) in gas-phase elemental mercury immobilization by mineral sulfide. Environ Sci Technol 53:3250–3257. https://doi.org/10.1021/acs.est.8b07317
Yang Z, Li HL, Yang JP, Feng S, Liu X, Zhao J, Qu WQ, Li P, Feng Y, Lee P, Shih K (2019) Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury. Adv Funct Mater 29:1807191. https://doi.org/10.1002/adfm.201807191
Yang Z, Li HL, Yang J, Yang Q, Zhao J, Yang JP, Qu WQ, Feng Y, Shih K (2019) Amorphous molybdenum selenide nanosheet as an efficient trap for the permanent sequestration of vapor-phase elemental mercury. Adv Sci 6:1901410. https://doi.org/10.1002/advs.201901410
Yang JP, Li Q, Li M, Zhu W, Yang Z, Qu WQ, Hu Y, Li HL (2020) In situ decoration of selenide on copper foam for the efficient immobilization of gaseous elemental mercury. Environ Sci Technol 54:2022–2030. https://doi.org/10.1021/acs.est.9b07057
Yang Q, Yang Z, Li HL, Zhao J, Yang JP, Qu WQ, Shih K (2020) Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. Chem Eng J 398:125611. https://doi.org/10.1016/j.cej.2020.125611
Yang Z, Yang Q, Li HL, Feng Y, Yang JP, Qu WQ, Zhao J, Meng F, Shih K (2020) Toward an understanding of fundamentals governing the elemental mercury sequestration by metal chalcogenides. Environ Sci Technol 54:9672–9680. https://doi.org/10.1021/acs.est.0c02568
Yang Z, Li HL, Yang Q, Qu WQ, Zhao J, Feng Y, Hu Y, Yang JP, Shih K (2020) Development of selenized magnetite (Fe3O4-xSey) as an efficient and recyclable trap for elemental mercury sequestration from coal combustion flue gas. Chem Eng J 394:125022. https://doi.org/10.1016/j.cej.2020.125022
Yang Z, Li HL, Yang Q, Zhao J, Meng F, Feng Y, Qu WQ, Yang JP, Shih K (2020) Amorphous molybdenum selenide intercalated magnetite as a recyclable trap for the effective sequestration of elemental mercury. J Mater Chem A 8:14955–14965. https://doi.org/10.1039/D0TA01190H
Zhang AC, Zhou P, Zhang X, Li H, Wang Y, Sun Z, Xiang J, Su S, Liu Z (2019) Insights into efficient removal of gaseous Hg0 using AgIO3-modified BiOI/CoFe2O4 composites through photocatalytic oxidation. Energy Fuels 33:12538–21254. https://doi.org/10.1021/acs.energyfuels.9b02366
Zhang H, Wang T, Sui Z, Zhang Y, Sun B, Pan WP (2019) Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma. Fuel 253:703–712. https://doi.org/10.1016/j.fuel.2019.05.068
Zhang Z, Wu J, Li B, Xu H, Liu DJ (2019) Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides. Chem Eng J 375:121946. https://doi.org/10.1016/j.cej.2019.121946
Zhang Z, Wu J, Liu DJ (2019) Co3O4/g-C3N4 hybrids for gas-phase Hg0 removal at low temperature. Processes 7:279. https://doi.org/10.3390/pr7050279
Zhao H, Yang G, Cao X, Pang CH, Kingman SW, Wu T (2016) Hg0 capture over CoMoS/γ-Al2O3 with MoS2 nanosheets at low temperatures. Environ Sci Technol 50:1056–1064. https://doi.org/10.1021/acs.est.5b04278
Zhao H, Mu X, Yang G, George M, Cao P, Fanady B, Rong S, Gao X, Wu T (2017) Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants. Appl Energ 207:254–264. https://doi.org/10.1016/j.apenergy.2017.05.172
Zhao H, Mu X, Yang G, Zheng C, Sun C, Gao X, Wu T (2017) Microwave-induced activation of additional active edge sites on the MoS2 surface for enhanced Hg0 capture. Appl Surf Sci 420:439–445. https://doi.org/10.1016/j.apsusc.2017.05.161
Zhao H, Fan H, Yang G, Lu L, Zheng C, Gao X, Wu T (2018) Integrated dynamic and steady state method and its application on the screening of MoS2 nanosheet-containing adsorbents for Hg0 capture. Energy Fuels 32:5338–5344. https://doi.org/10.1021/acs.energyfuels.8b00099
Zhao J, Li HL, Yang Z, Zhu L, Zhang M, Feng Y, Qu WQ, Yang JP, Shih K (2018) Dual roles of nano-sulfide in efficient removal of elemental mercury from coal combustion flue gas within a wide temperature range. Environ Sci Technol 52:12926–12933. https://doi.org/10.1021/acs.est.8b04340
Zhao S, Mei J, Xu HM, Liu W, Qu Z, Cui Y, Yan NQ (2018) Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr). J Hazard Mater 351:301–307. https://doi.org/10.1016/j.jhazmat.2017.12.016
Zhao H, Mu X, Zheng C, Liu S, Zhu Y, Gao X, Wu T (2019) Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. J Hazard Mater 366:240–249. https://doi.org/10.1016/j.jhazmat.2018.11.107
Zhao SL, Pudasainee D, Duan YF, Gupta R, Liu M, Liu J (2019) A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Prog Energ Combust 73:26–64. https://doi.org/10.1016/j.pecs.2019.02.001
Zou S, Liao Y, Xiong S, Huang N, Geng Y, Yang SJ (2017) H2S-modified Fe-Ti spinel: A recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a co-benefit of wet electrostatic precipitators. Environ Sci Technol 51:3426–3434. https://doi.org/10.1021/acs.est.6b05765