Elemental geochemistry of lower Cambrian phosphate nodules in Guizhou Province, South China: An integrated study by LA-ICP-MS mapping and solution ICP-MS
Tài liệu tham khảo
Algeo, 2007, Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 256, 130, 10.1016/j.palaeo.2007.02.029
Bao, 2008, Geochemistry of REE and yttrium in hydrothermal fluids from the Endeavour segment, Juan de Fuca Ridge, Geochem. J., 42, 359, 10.2343/geochemj.42.359
Bau, 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect, Contrib. Mineral. Petrol., 123, 323, 10.1007/s004100050159
Bellefroid, 2018, Constraints on Paleoproterozoic atmospheric oxygen levels, Proc. Natl. Acad. Sci., 115, 8104, 10.1073/pnas.1806216115
Berner, 2013, Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites, Sedimentology, 60, 548, 10.1111/j.1365-3091.2012.01350.x
Bright, 2009, Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?, Geochim. Cosmochim. Acta, 73, 1609, 10.1016/j.gca.2008.12.014
Butterfield, 2011, Animals and the invention of the Phanerozoic Earth system, Trends Ecol. Evol., 26, 81, 10.1016/j.tree.2010.11.012
Chen, 2003, Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna, Chem. Geol., 201, 103, 10.1016/S0009-2541(03)00235-3
Chen, 2009, Hydrothermal venting activities in the Early Cambrian, South China: petrological, geochronological and stable isotopic constraints, Chem. Geol., 258, 168, 10.1016/j.chemgeo.2008.10.016
Chen, 2015, Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China, Earth-Sci. Rev., 149, 181, 10.1016/j.earscirev.2015.01.013
Chen, 2015, Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals, Nat. Commun., 6, 7142, 10.1038/ncomms8142
Chen, 2015, New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China, Terra Nova, 27, 62, 10.1111/ter.12134
Cook, 1992, Phosphogenesis around the Proterozoic–Phanerozoic transition, J. Geol. Soc. Lond., 149, 615, 10.1144/gsjgs.149.4.0615
Cox, 2018, Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory, Earth Planet. Sci. Lett., 489, 28, 10.1016/j.epsl.2018.02.016
Cui, 2016, Phosphogenesis associated with the Shuram Excursion: petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China, Sediment. Geol., 341, 134, 10.1016/j.sedgeo.2016.05.008
Drake, 1975, Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study, Geochim. Cosmochim. Acta, 39, 689, 10.1016/0016-7037(75)90011-3
Dulski, 1994, Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry, Fresenius J. Anal. Chem., 350, 194, 10.1007/BF00322470
Elderfield, 1987, Rare earth elements in the pore waters of reducing nearshore sediments, Earth Planet. Sci. Lett., 82, 280, 10.1016/0012-821X(87)90202-0
Farquhar, 2000, Atmospheric influence of Earth’s earliest sulfur cycle, Science, 289, 756, 10.1126/science.289.5480.756
Filippelli, 1997, Controls on phosphorus concentration and accumulation in oceanic sediments, Mar. Geol., 139, 231, 10.1016/S0025-3227(96)00113-2
Fu, 2019, The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China, Science, 363, 1338, 10.1126/science.aau8800
Gao, 2018, Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 505, 381, 10.1016/j.palaeo.2018.06.019
Gregory, 2015, Trace element content of sedimentary pyrite in black shales, Econ. Geol., 110, 1389, 10.2113/econgeo.110.6.1389
Haley, 2004, Rare earth elements in pore waters of marine sediments, Geochim. Cosmochim. Acta, 68, 1265, 10.1016/j.gca.2003.09.012
Han, 2015, Origin of early Cambrian black-shale-hosted barite deposits in South China: mineralogical and geochemical studies, J. Asian Earth Sci., 106, 79, 10.1016/j.jseaes.2015.03.002
He, 2019, Possible links between extreme oxygen perturbations and the Cambrian radiation of animals, Nat. Geosci., 12, 468, 10.1038/s41561-019-0357-z
Hu, 2014, New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps, Chem. Geol., 381, 55, 10.1016/j.chemgeo.2014.05.014
Jarvis, 1994, Phosphorite geochemistry: state-of-the-art and environmental concerns, Eclogae Geol. Helv., 87, 643
Jiang, 2007, Extreme enrichment of polymetallic Ni–Mo–PGE–Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 217, 10.1016/j.palaeo.2007.03.024
Jiang, 2007, Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China, Chem. Geol., 244, 584, 10.1016/j.chemgeo.2007.07.010
Johannesson, 1999, Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake, Geochim. Cosmochim. Acta, 63, 153, 10.1016/S0016-7037(98)00291-9
Jolliffe, 2016, Principal component analysis: a review and recent developments, Phil. Trans. R. Soc. A, 374, 10.1098/rsta.2015.0202
Kipp, 2017, Biomass recycling and Earth’s early phosphorus cycle, Sci. Adv., 3, eaao4795, 10.1126/sciadv.aao4795
Koeppenkastrop, 1992, Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach, Chem. Geol., 95, 251, 10.1016/0009-2541(92)90015-W
Lawrence, 2006, Rare earth element and yttrium variability in South East Queensland waterways, Aquat. Geochem., 12, 39, 10.1007/s10498-005-4471-8
Lenton, 2014, Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era, Nat. Geosci., 7, 257, 10.1038/ngeo2108
Li, 2002, Grenvillian continental collision in south China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia, Geology, 30, 163, 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
Logan, 1995, Terminal Proterozoic reorganization of biogeochemical cycles, Nature, 376, 53, 10.1038/376053a0
Mao, 2016, Apatite trace element compositions: a robust new tool for mineral exploration, Econ. Geol., 111, 1187, 10.2113/econgeo.111.5.1187
Mazumdar, 1999, Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the lower Tal formation of the Krol Belt (Lesser Himalaya, India), Chem. Geol., 156, 275, 10.1016/S0009-2541(98)00187-9
McLennan, 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophys. Geosyst., 2, 10.1029/2000GC000109
Mills, 2014, Oxygen and animal evolution: did a rise of atmospheric oxygen “trigger” the origin of animals?, Bioessays, 36, 1145, 10.1002/bies.201400101
Moffett, 1990, Microbially mediated cerium oxidation in sea water, Nature, 345, 421, 10.1038/345421a0
Muscente, 2015, Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis, Palaeogeogr. Palaeoclimatol. Palaeoecol., 434, 46, 10.1016/j.palaeo.2014.10.013
O’Brien, 1980, Holocene phosphorite on the East Australian continental margin, Nature, 288, 690, 10.1038/288690a0
Och, 2012, The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling, Earth-Sci. Rev., 110, 26, 10.1016/j.earscirev.2011.09.004
Papineau, 2010, Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites, Astrobiology, 10, 165, 10.1089/ast.2009.0360
Parker, 1972, Petrology and origin of some phosphorites from the South African continental margin, J. Sediment. Petrol., 42, 434
Paytan, 2007, The oceanic phosphorus cycle, Chem. Rev., 107, 563, 10.1021/cr0503613
Pi, 2013, Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: constraints for redox environments and origin of metal enrichments, Precambrian Res., 225, 218, 10.1016/j.precamres.2011.07.004
Planavsky, 2010, The evolution of the marine phosphate reservoir, Nature, 467, 1088, 10.1038/nature09485
Poulton, 2017, Early phosphorus redigested, Nat. Geosci., 10, 75, 10.1038/ngeo2884
Pufahl, 2012, Oxygenation of the Earth’s atmosphere–ocean system: a review of physical and chemical sedimentologic responses, Mar. Pet. Geol., 32, 1, 10.1016/j.marpetgeo.2011.12.002
Qi, 2000, Determination of trace elements in granites by inductively coupled plasma mass spectrometry, Talanta, 51, 507, 10.1016/S0039-9140(99)00318-5
Reinhard, 2017, Evolution of the global phosphorus cycle, Nature, 541, 386, 10.1038/nature20772
Rønsbo, 1989, Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland, and the petrological implications, Am. Mineral., 74, 896
Rønsbo, 2008, Apatite in the Ilímaussaq alkaline complex: occurrence, zonation and compositional variation, Lithos, 106, 71, 10.1016/j.lithos.2008.06.006
Ruttenberg, 2014, The global phosphorus cycle, 499
Schuffert, 1994, Rates of formation of modern phosphorite off western Mexico, Geochim. Cosmochim. Acta, 58, 5001, 10.1016/0016-7037(94)90227-5
She, 2013, Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: in situ micro-analysis of textures and composition, Precambrian Res., 235, 20, 10.1016/j.precamres.2013.05.011
Shen, 2000, Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian, Palaeogeogr. Palaeoclimatol. Palaeoecol., 158, 99, 10.1016/S0031-0182(00)00033-X
Shields, 2001, Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites, Chem. Geol., 175, 29, 10.1016/S0009-2541(00)00362-4
Steiner, 2007, Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China), Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 67, 10.1016/j.palaeo.2007.03.046
Sun, 1974, Distribution coefficients of Eu and Sr for plagioclase–liquid and clinopyroxene–liquid in oceanic ridge basalt: an experimental study, Geochim. Cosmochim. Acta, 38, 1415, 10.1016/0016-7037(74)90096-9
Tarhan, 2015, Protracted development of bioturbation through the early Palaeozoic Era, Nat. Geosci., 8, 865, 10.1038/ngeo2537
Taylor, 1985, 312
Tribovillard, 2006, Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 232, 12, 10.1016/j.chemgeo.2006.02.012
Tyrrell, 1999, The relative influences of nitrogen and phosphorous on ocean primary production, Nature, 400, 525, 10.1038/22941
Van Cappellen, 1994, Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9, 677, 10.1029/94PA01455
Van Cappellen, 1996, Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity, Science, 271, 493, 10.1126/science.271.5248.493
Wallace, 2017, Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants, Earth Planet. Sci. Lett., 466, 12, 10.1016/j.epsl.2017.02.046
Wallmann, 2003, Feedbacks between oceanic redox states and marine productivity: a model perspective focused on benthic phosphorus cycling, Glob. Biogeochem. Cycles, 17, 1084, 10.1029/2002GB001968
Wang, 2003, History of Neoproterozoic rift basins in South China: implications for Rodinia break-up, Precambrian Res., 122, 141, 10.1016/S0301-9268(02)00209-7
Wang, 2012, New U–Pb age from the basal Niutitang Formation in South China: implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran–Cambrian transition, J. Asian Earth Sci., 48, 1, 10.1016/j.jseaes.2011.12.023
Wang, 2016, In situ imaging of multi-elements on pyrite using laser ablation-inductively coupled plasma-mass spectrometry, Chin. J. Anal. Chem., 44, 1665, 10.1016/S1872-2040(16)60971-4
Weill, 1973, Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model, Science, 180, 1059, 10.1126/science.180.4090.1059
Xu, 2011, Re–Os age of polymetallic Ni–Mo–PGE–Au mineralization in Early Cambrian black shales of South China—a reassessment, Econ. Geol., 106, 511, 10.2113/econgeo.106.3.511
Yeasmin, 2017, Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China, J. Asian Earth Sci., 134, 365, 10.1016/j.jseaes.2016.08.019
Yong, 2013, A beginner’s guide to factor analysis: focusing on exploratory factor analysis, Tutor. Quant. Methods Psychol., 9, 79, 10.20982/tqmp.09.2.p079
Zhang, 1996, Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean, Geochim. Cosmochim. Acta, 60, 4631, 10.1016/S0016-7037(96)00276-1
Zhang, 2016, Diagenetic uptake of rare earth elements by conodont apatite, Palaeogeogr. Palaeoclimatol. Palaeoecol., 458, 176, 10.1016/j.palaeo.2015.10.049
Zhao, 2013, Rare-earth element patterns in conodont albid crowns: evidence for massive inputs of volcanic ash during the latest Permian biocrisis?, Glob. Planet. Chang., 105, 135, 10.1016/j.gloplacha.2012.09.001
Zhu, 2017, A LA-ICP-MS analysis of rare earth elements on phosphatic grains of the Ediacaran Doushantuo phosphorite at Weng’an, South China: implication for depositional conditions and diagenetic processes, Geol. Mag., 154, 1381, 10.1017/S001675681700022X
Zhu, 2014, Rare earth element and SrNd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan Province, South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 398, 132, 10.1016/j.palaeo.2013.10.002