Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects

Acta Materialia - Tập 216 - Trang 117135 - 2021
Hyun Seok Oh1,2, Khorgolkhuu Odbadrakh3, Yuji Ikeda4,5, Sai Mu6, Fritz Körmann4,7, Cheng-Jun Sun8, Heh Sang Ahn1, Kook Noh Yoon1, Duancheng Ma9, Cemal Cem Tasan2, Takeshi Egami6,10, Eun Soo Park1
1Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
2Department of Materials Science and Engineering, Massachusetts Institute of Technology, MA 02139, USA
3Joint Institute for Computational Sciences, University of Tennessee and Oak Ridge National Laboratory, Oak Ridge, TN 37996, USA
4Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
5Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
6Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
7Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, Netherlands
8Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA
9Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
10Department of Materials Science and Engineering and Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

Tài liệu tham khảo

Zhang, 2008, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10, 534, 10.1002/adem.200700240 Yeh, 2007, Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103, 41, 10.1016/j.matchemphys.2007.01.003 Sohn, 2019, Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion, Adv. Mater., 31, 1, 10.1002/adma.201807142 Okamoto, 2016, Atomic displacement in the CrMnFeCoNi high-entropy alloy - A scaling factor to predict solid solution strengthening, AIP Adv, 6, 10.1063/1.4971371 Oh, 2016, Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment, Entropy, 18, 1, 10.3390/e18090321 Chang, 2014, Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials, Sci. Rep., 4, 1, 10.1038/srep04162 Zhang, 2015, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys, Nat. Commun., 6, 10.1038/ncomms9736 Mu, 2019, Influence of local lattice distortions on electrical transport of refractory high entropy alloys, Scr. Mater., 170, 189, 10.1016/j.scriptamat.2019.05.032 Egami, 2014, Irradiation resistance of multicomponent alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 45, 180, 10.1007/s11661-013-1994-2 Owen, 2017, Analysis of short-range order in Cu3Au using X-ray pair distribution functions, Acta Mater, 125, 15, 10.1016/j.actamat.2016.11.048 Tong, 2018, Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction, Mater. Des., 155, 1, 10.1016/j.matdes.2018.05.056 Varvenne, 2016, Theory of strengthening in fcc high entropy alloys, Acta Mater, 118, 164, 10.1016/j.actamat.2016.07.040 Yoshida, 2019, Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high /medium entropy alloys, Acta Mater, 171, 201, 10.1016/j.actamat.2019.04.017 Oh, 2019, Engineering atomic-level complexity in high-entropy and complex concentrated alloys, Nat. Commun., 10, 1, 10.1038/s41467-019-10012-7 Wang, 2017, Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys, Extrem. Mech. Lett., 17, 38, 10.1016/j.eml.2017.09.015 Song, 2017, Local lattice distortion in high-entropy alloys, Phys. Rev. Mater., 1, 1 He, 2018, On lattice distortion in high entropy alloys, Front. Mater., 5, 1, 10.3389/fmats.2018.00042 Tong, 2020, Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys, Acta Mater, 183, 172, 10.1016/j.actamat.2019.11.026 Ishibashi, 2020, Correlation analysis of strongly fluctuating atomic volumes, charges, and stresses in body-centered cubic refractory high-entropy alloys, Phys. Rev. Mater., 4, 1 Ye, 2015, A geometric model for intrinsic residual strain and phase stability in high entropy alloys, Acta Mater, 94, 152, 10.1016/j.actamat.2015.04.051 Nöhring, 2019, Correlation of microdistortions with misfit volumes in High Entropy Alloys, Scr. Mater., 168, 119, 10.1016/j.scriptamat.2019.04.012 Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719 Rehr, 1998, Real space multiple scattering calculation of XANES, Phys. Rev. B., 58, 7565, 10.1103/PhysRevB.58.7565 Zunger, 1990, Special quasirandom structures, Phys. Rev. Lett., 65, 353, 10.1103/PhysRevLett.65.353 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B., 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B - Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Ma, 2015, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Mater, 100, 90, 10.1016/j.actamat.2015.08.050 Niu, 2015, Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo, Appl. Phys. Lett., 106 Ikeda, 2019, Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy, Phys. Rev. Mater., 3, 68 Kies, 2020, Combined Al and C alloying enables mechanism-oriented design of multi-principal element alloys: Ab initio calculations and experiments, Scr. Mater., 178, 366, 10.1016/j.scriptamat.2019.12.004 Rao, 2020, Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study, Phys. Rev. Mater., 4, 14402, 10.1103/PhysRevMaterials.4.014402 Wu, 2020, Role of magnetic ordering for the design of quinary TWIP-TRIP high entropy alloys, Phys. Rev. Mater., 4, 1 Bader, 1994 Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B., 13, 5188, 10.1103/PhysRevB.13.5188 Wang, 1995, Order-N Multiple Scattering Approach to Electronic Structure Calculations, Phys. Rev. Lett., 75, 2867, 10.1103/PhysRevLett.75.2867 Nicholson, 1994, Temmerman, Stationary nature of the density-functional free energy: Application to multiple-scattering accelerated calculations, Phys. Rev. B., 50, 686, 10.1103/PhysRevB.50.14686 Nicholson, 2013, First-principles local stress in crystalline and amorphous metals, J. Phys. Condens. Matter., 25 Nielsen, 1983, First-principles calculation of stress, Phys. Rev. Lett., 50, 697, 10.1103/PhysRevLett.50.697 Johnson, 1986, Density-functional theory for random alloys: Total energy within the coherent-potential approximation, Phys. Rev. Lett., 56, 2088, 10.1103/PhysRevLett.56.2088 Von Barth, 1972, A local exchange-correlation potential for the spin polarized case. I, J. Phys. C Solid State Phys., 5, 1629, 10.1088/0022-3719/5/13/012 Egami, 2011, Atomic level stresses, Prog. Mater. Sci., 56, 637, 10.1016/j.pmatsci.2011.01.004 Egami, 1980, Structural defects in amorphous solids A computer simulation study, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 41, 883 Iwasawa, 2017 Bohmer, 1979, Temperature dependence of the mean square relative displacements of nearest-neighbour atoms derived from EXAFS spectra, J. Phys. C Solid State Phys., 12, 2465, 10.1088/0022-3719/12/13/011 Marcus, 1998, The mechanism of antiferromagnetism in chromium, J. Phys. Condens. Matter., 10, 6541, 10.1088/0953-8984/10/29/014 W.Y. Wang, S.L. Shang, Y. Wang, Y. Jie, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X. Dong, Z. Liu, Lattice distortion induced anomalous ferromagnetism and electronic structure in FCC Fe and Fe-TM (TM ¼ Cr, Ni, Ta and Zr) alloys, Mater. Chem. Phys. 162 (2015) 748–756. doi:10.1016/j.matchemphys.2015.06.051. Anand, 2020, Electron spin mediated distortion in metallic systems, Scr. Mater., 185, 159, 10.1016/j.scriptamat.2020.04.025 Chikazumi, 2009 Zhang, 2020, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581 Zhang, 2017, Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy, Phys. Rev. Lett., 118, 1, 10.1103/PhysRevLett.118.205501 Zhao, 2018, Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys, Phys. Rev. Mater., 2 Mann, 2000, Configuration energies of the d-block elements, J. Am. Chem. Soc., 122, 5132, 10.1021/ja9928677 Ding, 2018, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci., 10.1073/pnas.1808660115 Li, 2019, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10, 1 Cohen, 1962, Some aspects of short-range order, J. Phys. Radium., 23, 749, 10.1051/jphysrad:019620023010074901 Gaertner, 2020, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-entropy alloys: Kinetic hints towards a low-temperature phase instability of the solid-solution?, Scr. Mater., 187, 57, 10.1016/j.scriptamat.2020.05.060 Wu, 2014, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater, 81, 428, 10.1016/j.actamat.2014.08.026 Olson, 1997, Computational Design of Hierarchically Structured Materials, Science (80-.), 277, 1237 Sales, 2016, Quantum Critical Behavior in a Concentrated Ternary Solid Solution, Sci. Rep., 6, 1, 10.1038/srep26179