Electroweak radiative corrections for collider physics

Physics Reports - Tập 864 - Trang 1-163 - 2020
Ansgar Denner1, Stefan Dittmaier2
1Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Emil-Hilb-Weg 22, 97074 Würzburg, Germany
2Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Str. 3, 79104 Freiburg, Germany

Tài liệu tham khảo

Fritzsch, 1973, Advantages of the color octet gluon picture, Phys. Lett., 47B, 365, 10.1016/0370-2693(73)90625-4 Gross, 1973, Asymptotically free gauge theories I, Phys. Rev., D8, 3633 Politzer, 1973, Reliable perturbative results for strong interactions?, Phys. Rev. Lett., 30, 1346, 10.1103/PhysRevLett.30.1346 Gross, 1974, Asymptotically free gauge theories II, Phys. Rev., D9, 980 Glashow, 1961, Partial symmetries of weak interactions, Nuclear Phys., 22, 579, 10.1016/0029-5582(61)90469-2 Weinberg, 1967, A model of leptons, Phys. Rev. Lett., 19, 1264, 10.1103/PhysRevLett.19.1264 Salam, 1968, Weak and electromagnetic interactions, 367 Englert, 1964, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett., 13, 321, 10.1103/PhysRevLett.13.321 Higgs, 1964, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., 13, 508, 10.1103/PhysRevLett.13.508 Higgs, 1964, Broken symmetries, massless particles and gauge fields, Phys. Lett., 12, 132, 10.1016/0031-9163(64)91136-9 Guralnik, 1964, Global conservation laws and massless particles, Phys. Rev. Lett., 13, 585, 10.1103/PhysRevLett.13.585 Higgs, 1966, Spontaneous symmetry breakdown without massless bosons, Phys. Rev., 145, 1156, 10.1103/PhysRev.145.1156 Cleveland, 1998, Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J., 496, 505, 10.1086/305343 Fukuda, 1998, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett., 81, 1562, 10.1103/PhysRevLett.81.1562 Ahmad, 2002, Direct evidence for neutrino flavor transformation from neutral current interactions in the sudbury neutrino observatory, Phys. Rev. Lett., 89, 011301, 10.1103/PhysRevLett.89.011301 Glashow, 1970, Weak interactions with lepton-hadron symmetry, Phys. Rev., D2, 1285 Decamp, 1989, Determination of the number of light neutrino species, Phys. Lett., B231, 519, 10.1016/0370-2693(89)90704-1 Schael, 2006, Precision electroweak measurements on the Z resonance, Phys. Rep., 427, 257, 10.1016/j.physrep.2005.12.006 Cabibbo, 1963, Unitary symmetry and leptonic decays, Phys. Rev. Lett., 10, 531, 10.1103/PhysRevLett.10.531 Kobayashi, 1973, CP violation in the renormalizable theory of weak interaction, Progr. Theoret. Phys., 49, 652, 10.1143/PTP.49.652 ’t Hooft, 1971, Renormalization of massless Yang-Mills fields, Nuclear Phys., B33, 173, 10.1016/0550-3213(71)90395-6 ’t Hooft, 1971, Renormalizable Lagrangians for massive Yang-Mills fields, Nuclear Phys., B35, 167 ’t Hooft, 1972, Regularization and renormalization of gauge fields, Nuclear Phys., B44, 189 ’t Hooft, 1972, Combinatorics of gauge fields, Nuclear Phys., B50, 318 Lee, 1972, Spontaneously broken gauge symmetries part 1: Preliminaries, Phys. Rev., D5, 3121 Lee, 1972, Spontaneously broken gauge symmetries part 2: Perturbation theory and renormalization, Phys. Rev., D5, 3137 Lee, 1973, Spontaneously broken gauge symmetries part 4: General gauge formulation, Phys. Rev., D7, 1049 Lee, 1974, Renormalization of gauge theories: unbroken and broken, Phys. Rev., D9, 933 Arnison, 1983, Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540GeV, Phys. Lett., B122, 103, 10.1016/0370-2693(83)91177-2 Banner, 1983, Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN p̄p collider, Phys. Lett., B122, 476, 10.1016/0370-2693(83)91605-2 Arnison, 1983, Experimental observation of lepton pairs of invariant mass around 95GeV∕c2 at the CERN SPS collider, Phys. Lett., B126, 398, 10.1016/0370-2693(83)90188-0 Bagnaia, 1983, Evidence for Z0→e+e− at the CERN p̄p collider, Phys. Lett., B129, 130, 10.1016/0370-2693(83)90744-X ’t Hooft, 1979, Scalar one-loop integrals, Nuclear Phys., B153, 365 Passarino, 1979, One-loop corrections for e+e− annihilation into μ+μ− in the Weinberg model, Nuclear Phys., B160, 151, 10.1016/0550-3213(79)90234-7 Ross, 1973, Renormalization of a unified theory of weak and electromagnetic interactions, Nuclear Phys., B51, 125, 10.1016/0550-3213(73)90505-1 Sirlin, 1980, Radiative corrections in the SU(2)L×U(1) theory: A simple renormalization framework, Phys. Rev., D22, 971 Aoki, 1982, Electroweak theory: Framework of on-shell renormalization and study of higher order effects, Progr. Theoret. Phys. Suppl., 73, 1, 10.1143/PTPS.73.1 Böhm, 1986, On the 1-loop renormalization of the electroweak standard model and its application to leptonic processes, Fortschr. Phys., 34, 687 Jegerlehner, 1990, Renormalizing the standard model, 476 Denner, 1993, Techniques for the calculation of electroweak radiative corrections at the one-loop level and results for W-physics at LEP200, Fortschr. Phys., 41, 307 1989 Bardin, 1995, Electroweak working group report, 7 Bardin, 1999 Bardin, 1999 Bardin, 1997, Event generators for WW physics, 3 Grünewald, 2000, Four fermion production in electron–positron collisions, 1 Berends, 1985, Complete lowest-order calculations for four-lepton final states in electron-positron collisions, Nuclear Phys., B253, 441, 10.1016/0550-3213(85)90541-3 Hilgart, 1993, An electroweak Monte Carlo for four fermion production, Comput. Phys. Comm., 75, 191, 10.1016/0010-4655(93)90175-C Berends, 1994, All electroweak four fermion processes in electron–positron collisions, Nuclear Phys., B424, 308, 10.1016/0550-3213(94)90297-6 Kleiss, 1994, Weight optimization in multichannel Monte Carlo, Comput. Phys. Comm., 83, 141, 10.1016/0010-4655(94)90043-4 Harris, 2002, Two cutoff phase space slicing method, Phys. Rev., D65, 094032 Giele, 1992, Higher-order corrections to jet cross sections in e+e− annihilation, Phys. Rev., D46, 1980 Frixione, 1996, Three jet cross-sections to next-to-leading order, Nuclear Phys., B467, 399, 10.1016/0550-3213(96)00110-1 Catani, 1997, A general algorithm for calculating jet cross-sections in NLO QCD, Nuclear Phys., B485, 291, 10.1016/S0550-3213(96)00589-5 Dittmaier, 2000, A general approach to photon radiation off fermions, Nuclear Phys., B565, 69, 10.1016/S0550-3213(99)00563-5 Stuart, 1991, Gauge invariance, analyticity and physical observables at the Z0 resonance, Phys. Lett., B262, 113, 10.1016/0370-2693(91)90653-8 Aeppli, 1994, Unstable particles in one loop calculations, Nuclear Phys., B428, 126, 10.1016/0550-3213(94)90195-3 Denner, 1999, Predictions for all processes e+e−→4fermions+γ, Nuclear Phys., B560, 33, 10.1016/S0550-3213(99)00437-X Denner, 2005, Electroweak corrections to charged-current e+e−→4 fermion processes: Technical details and further results, Nuclear Phys., B724, 247, 10.1016/j.nuclphysb.2005.06.033 Schael, 2013, Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rep., 532, 119, 10.1016/j.physrep.2013.07.004 Erler, 2019, Electroweak precision tests of the standard model after the discovery of the Higgs boson, Prog. Part. Nucl. Phys., 106, 68, 10.1016/j.ppnp.2019.02.007 Aad, 2012, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett., B716, 1, 10.1016/j.physletb.2012.08.020 Chatrchyan, 2012, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett., B716, 30, 10.1016/j.physletb.2012.08.021 Dittmaier, 2011 Dittmaier, 2012 Andersen, 2013 de Florian, 2016 Alwall, 2014, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys., 07, 079, 10.1007/JHEP07(2014)079 Cascioli, 2012, Scattering amplitudes with Open Loops, Phys. Rev. Lett., 108, 111601, 10.1103/PhysRevLett.108.111601 Kallweit, 2015, NLO electroweak automation and precise predictions for W+multijet production at the LHC, J. High Energy Phys., 04, 012, 10.1007/JHEP04(2015)012 Buccioni, 2019, OpenLoops 2, Eur. Phys. J., C79, 866, 10.1140/epjc/s10052-019-7306-2 Actis, 2013, Recursive generation of one-loop amplitudes in the standard model, J. High Energy Phys., 1304, 037, 10.1007/JHEP04(2013)037 Actis, 2017, RECOLA: Recursive computation of one-loop amplitudes, Comput. Phys. Comm., 214, 140, 10.1016/j.cpc.2017.01.004 Andersen, 2014 Andersen, 2016 Andersen, 2018 Djouadi, 2008, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rep., 457, 1, 10.1016/j.physrep.2007.10.004 Dittmaier, 2013, The Higgs boson in the standard model – from LEP to LHC: expectations, searches, and discovery of a candidate, Prog. Part. Nucl. Phys., 70, 1, 10.1016/j.ppnp.2013.02.001 2015 Spira, 2017, Higgs boson production and decay at hadron colliders, Prog. Part. Nucl. Phys., 95, 98, 10.1016/j.ppnp.2017.04.001 Campbell, 2017 Hollik, 1990, Radiative corrections in the standard model and their role for precision tests of the electroweak theory, Fortschr. Phys., 38, 165, 10.1002/prop.2190380302 Böhm, 2001 Gunion, 2000, The Higgs hunter’s guide, Front. Phys., 80, 1 Grzadkowski, 2010, Dimension-six terms in the standard model Lagrangian, J. High Energy Phys., 1010, 085, 10.1007/JHEP10(2010)085 Peskin, 1995 Schwartz, 2014 Bilenky, 2015, Neutrino in standard model and beyond, Phys. Part. Nucl., 46, 475, 10.1134/S1063779615040024 P. Hernandez, Neutrino physics, in: Proceedings, 8th CERN–Latin-American School of High-Energy Physics (CLASHEP2015): Ibarra, Ecuador, March 05-17, 2015, 2016, pp. 85–142, arXiv:1708.01046, http://dx.doi.org/10.5170/CERN-2016-005.85. Tanabashi, 2018, Review of particle physics, Phys. Rev., D98, 030001 Pontecorvo, 1958, Inverse beta processes and nonconservation of lepton charge, Sov. Phys.—JETP, 7, 172 Maki, 1962, Remarks on the unified model of elementary particles, Progr. Theoret. Phys., 28, 870, 10.1143/PTP.28.870 Sterman, 1993 Weinberg, 2013 M. Dine, TASI lectures on the strong CP problem, in: Flavor Physics for the Millennium: Theoretical Advanced Study Institute in Elementary Particle Physics, TASI 2000, Boulder, USA, June 4-30, 2000, pp. 349–369, arXiv:hep-ph/0011376. Fujikawa, 1979, Path-integral measure for gauge-invariant fermion theories, Phys. Rev. Lett., 42, 1195, 10.1103/PhysRevLett.42.1195 Dragos, 2019 Pendlebury, 2015, Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev., D92, 092003 Graner, 2016, Reduced limit on the permanent electric dipole moment of Hg199, Phys. Rev. Lett., 116, 161601, 10.1103/PhysRevLett.116.161601 Becchi, 1975, Renormalization of the Abelian Higgs-Kibble model, Comm. Math. Phys., 42, 127, 10.1007/BF01614158 Collins, 1986 DeWitt, 1967, Quantum theory of gravity. 2. the manifestly covariant theory, Phys. Rev., 162, 1195, 10.1103/PhysRev.162.1195 B.S. DeWitt, A gauge invariant effective action, in: Oxford Conference on Quantum Gravity Oxford, England, April 15-19, 1980, pp. 449–487. G. ’t Hooft, The background field method in gauge field theories, in: Functional and Probabilistic Methods in Quantum Field Theory. Proceedings, 12th Winter School of Theoretical Physics, Karpacz, Feb 17-March 2, 1975, pp. 345–369. Boulware, 1981, Gauge dependence of the effective action, Phys. Rev., D23, 389 Abbott, 1981, The background field method beyond one loop, Nuclear Phys., B185, 189, 10.1016/0550-3213(81)90371-0 Denner, 1995, Application of the background field method to the electroweak standard model, Nuclear Phys., B440, 95, 10.1016/0550-3213(95)00037-S Denner, 1994, Gauge invariance of Green functions: Background field method versus pinch technique, Phys. Lett., B333, 420, 10.1016/0370-2693(94)90162-7 Cornwall, 1982, Dynamical mass generation in continuum QCD, Phys. Rev., D26, 1453 Cornwall, 1989, Gauge invariant three gluon vertex in QCD, Phys. Rev., D40, 3474 Papavassiliou, 1990, Gauge invariant proper selfenergies and vertices in gauge theories with broken symmetry, Phys. Rev., D41, 3179 Abbott, 1982, Introduction to the background field method, Acta Phys. Polon., B13, 33 Abbott, 1983, The background field method and the S matrix, Nuclear Phys., B229, 372, 10.1016/0550-3213(83)90337-1 Rebhan, 1985, On the equivalence of the background field method, Z. Phys., C28, 269 Denner, 1996, Dyson summation without violating Ward identities and the Goldstone-boson equivalence theorem, Phys. Rev., D54, 4499 Denner, 2018, Renormalization of mixing angles, J. High Energy Phys., 11, 104, 10.1007/JHEP11(2018)104 Aoki, 1981, Electroweak radiative corrrections to high energy νe scatterings, Progr. Theoret. Phys., 65, 1001, 10.1143/PTP.65.1001 Buchmüller, 1986, Effective Lagrangian analysis of new interactions and flavor conservation, Nuclear Phys. B, 268, 621, 10.1016/0550-3213(86)90262-2 Giudice, 2007, The strongly-interacting light Higgs, J. High Energy Phys., 06, 045, 10.1088/1126-6708/2007/06/045 Bonnet, 2012, Anomalous Higgs couplings at the LHC, and their theoretical interpretation, Phys. Rev., D85, 035016 Corbett, 2012, Constraining anomalous Higgs interactions, Phys. Rev., D86, 075013 Bonnet, 2012, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev., D86, 093014 Passarino, 2013, NLO inspired effective Lagrangians for Higgs physics, Nuclear Phys., B868, 416, 10.1016/j.nuclphysb.2012.11.018 Corbett, 2013, Robust determination of the Higgs couplings: Power to the data, Phys. Rev., D87, 015022 Contino, 2013, Effective Lagrangian for a light Higgs-like scalar, J. High Energy Phys., 07, 035, 10.1007/JHEP07(2013)035 Brivio, 2019, The standard model as an effective field theory, Phys. Rep., 793, 1, 10.1016/j.physrep.2018.11.002 Weinberg, 1979, Baryon and lepton nonconserving processes, Phys. Rev. Lett., 43, 1566, 10.1103/PhysRevLett.43.1566 Alonso, 2014, Renormalization group evolution of the standard model dimension six operators III: Gauge coupling dependence and phenomenology, J. High Energy Phys., 04, 159, 10.1007/JHEP04(2014)159 Passarino, 2016 Ross, 1975, Neutral currents in neutrino experiments, Nuclear Phys., B95, 135, 10.1016/0550-3213(75)90485-X Jenkins, 2013, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, J. High Energy Phys., 10, 087, 10.1007/JHEP10(2013)087 Jenkins, 2014, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, J. High Energy Phys., 01, 035, 10.1007/JHEP01(2014)035 Ghezzi, 2015, NLO Higgs effective field theory and κ-framework, J. High Energy Phys., 07, 175, 10.1007/JHEP07(2015)175 Pruna, 2014, The μ→eγ decay in a systematic effective field theory approach with dimension 6 operators, J. High Energy Phys., 10, 014, 10.1007/JHEP10(2014)014 Hartmann, 2015, Higgs decay to two photons at one loop in the standard model effective field theory, Phys. Rev. Lett., 115, 191801, 10.1103/PhysRevLett.115.191801 Hartmann, 2015, On one-loop corrections in the standard model effective field theory; the Γ(h→γγ) case, J. High Energy Phys., 07, 151, 10.1007/JHEP07(2015)151 Baglio, 2019, NLO effects in EFT fits to W+W− production at the LHC, Phys. Rev., D99, 035029 Cullen, 2019, NLO corrections to h→bb̄ decay in SMEFT, J. High Energy Phys., 08, 173, 10.1007/JHEP08(2019)173 Hartmann, 2017, The Z decay width in the SMEFT: yt and λ corrections at one loop, J. High Energy Phys., 03, 060, 10.1007/JHEP03(2017)060 Dawson, 2018, Standard model EFT corrections to Z boson decays, Phys. Rev., D98, 093003 Dawson, 2018, Electroweak corrections to Higgs boson decays to γγ and W+W− in standard model EFT, Phys. Rev., D98, 095005 Dawson, 2019, Electroweak and QCD corrections to Z and W pole observables in the SMEFT, Phys. Rev. D, 101, 1 Martini, 2019 Brivio, 2019 Marciano, 1980, Radiative corrections to neutrino-induced neutral-current phenomena in the SU(2)L×U(1) theory, Phys. Rev., D22, 2695 Bardin, 1980, On the lowest order electroweak corrections to spin 1/2 fermion scattering. (I). The one-loop diagrammar, Nuclear Phys., B175, 435, 10.1016/0550-3213(80)90021-8 Fleischer, 1981, Radiative corrections to Higgs-boson decays in the Weinberg-Salam model, Phys. Rev., D23, 2001 Sakakibara, 1981, Radiative corrections to the neutral-current interactions in the Weinberg-Salam model, Phys. Rev., D24, 1149 Sirlin, 1981, Radiative corrections to νμ+N→μ−+X and their effect on the determination of ρ2 and sin2θW, Nuclear Phys., B189, 442, 10.1016/0550-3213(81)90574-5 Bardin, 1982, On the lowest order electroweak corrections to spin-1/2 fermion scattering. 2. The one-loop amplitudes, Nuclear Phys., B197, 1, 10.1016/0550-3213(82)90152-3 Thirring, 1950, Radiative corrections in the nonrelativistic limit, Phil. Mag. Ser. 7, 41, 1193, 10.1080/14786445008561159 Dittmaier, 1997, Thirring’s low-energy theorem and its generalizations in the electroweak standard model, Phys. Lett., B409, 509, 10.1016/S0370-2693(97)00888-5 Freitas, 2002, Electroweak two-loop corrections to the MW–MZ mass correlation in the standard model, Nuclear Phys., B632, 189, 10.1016/S0550-3213(02)00243-2 Awramik, 2003, Bosonic corrections to Δr at the two-loop level, Phys. Rev., D68, 053004 Actis, 2007, Two-loop renormalization in the standard model. part I: Prolegomena, Nuclear Phys., B777, 1, 10.1016/j.nuclphysb.2007.04.021 Actis, 2007, Two-loop renormalization in the standard model part II: renormalization procedures and computational techniques, Nuclear Phys., B777, 35, 10.1016/j.nuclphysb.2007.03.043 Actis, 2007, Two-loop renormalization in the standard model part III: renormalization equations and their solutions, Nuclear Phys., B777, 100, 10.1016/j.nuclphysb.2007.04.027 Jarlskog, 1985, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation, Phys. Rev. Lett., 55, 1039, 10.1103/PhysRevLett.55.1039 Jarlskog, 1985, A basis independent formulation of the connection between quark mass matrices, CP violation and experiment, Z. Phys., C29, 491 Denner, 1990, Renormalization of the quark mixing matrix, Nuclear Phys., B347, 203, 10.1016/0550-3213(90)90557-T Gambino, 1999, Fermion mixing renormalization and gauge invariance, Phys. Lett., B454, 98, 10.1016/S0370-2693(99)00321-4 Balzereit, 1999, The renormalization group evolution of the CKM matrix, Eur. Phys. J., C9, 197, 10.1007/s100529900040 Diener, 2001, On mass shell renormalization of fermion mixing matrices, Nuclear Phys., B617, 291, 10.1016/S0550-3213(01)00453-9 Yamada, 2001, Gauge dependence of the on-shell renormalized mixing matrices, Phys. Rev., D64, 036008 Pilaftsis, 2002, Gauge and scheme dependence of mixing matrix renormalization, Phys. Rev., D65, 115013 Denner, 2004, Physical renormalization condition for the quark mixing matrix, Phys. Rev., D70, 033002 Kniehl, 2006, Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix, Phys. Rev., D74, 116003 Kniehl, 2009, A novel formulation of Cabibbo-Kobayashi-Maskawa matrix renormalization, Phys. Lett., B673, 208, 10.1016/j.physletb.2009.02.024 Krause, 2016, Gauge-independent renormalization of the 2-Higgs-doublet model, J. High Energy Phys., 09, 143, 10.1007/JHEP09(2016)143 Denner, 2016, Gauge-independent MS¯ renormalization in the 2HDM, J. High Energy Phys., 09, 115, 10.1007/JHEP09(2016)115 Degrassi, 2004, Two loop renormalization of the electric charge in the standard model, Phys. Rev., D69, 073007 Beenakker, 2003, NLO QCD corrections to tt̄H production in hadron collisions, Nuclear Phys., B653, 151, 10.1016/S0550-3213(03)00044-0 Brown, 1952, Radiative corrections to Compton scattering, Phys. Rev., 85, 231, 10.1103/PhysRev.85.231 Ossola, 2007, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nuclear Phys., B763, 147, 10.1016/j.nuclphysb.2006.11.012 Bollini, 1972, Dimensional renormalization: The number of dimensions as a regularizing parameter, Nuovo Cimento, B12, 20, 10.1007/BF02895558 Leibbrandt, 1975, Introduction to the technique of dimensional regularization, Rev. Modern Phys., 47, 849, 10.1103/RevModPhys.47.849 Dittmaier, 2003, Separation of soft and collinear singularities from one loop N point integrals, Nuclear Phys., B675, 447, 10.1016/j.nuclphysb.2003.10.003 Piguet, 1974, Construction of a strictly renormalizable effective Lagrangian for the massive abelian Higgs model, Comm. Math. Phys., 37, 19, 10.1007/BF01646031 Denner, 2011, Scalar one-loop 4-point integrals, Nuclear Phys., B844, 199, 10.1016/j.nuclphysb.2010.11.002 Gnendiger, 2017, To d, or not to d: recent developments and comparisons of regularization schemes, Eur. Phys. J., C77, 471, 10.1140/epjc/s10052-017-5023-2 Jegerlehner, 2001, Facts of life with γ5, Eur. Phys. J., C18, 673, 10.1007/s100520100573 Akyeampong, 1973, Dimensional regularization, abnormal amplitudes and anomalies, Nuovo Cimento, A17, 578, 10.1007/BF02786835 Breitenlohner, 1977, Dimensional renormalization and the action principle, Comm. Math. Phys., 52, 11, 10.1007/BF01609069 Bonneau, 1980, Consistency in dimensional regularization with γ5, Phys. Lett., 96B, 147, 10.1016/0370-2693(80)90232-4 Larin, 1993, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett., B303, 113, 10.1016/0370-2693(93)90053-K Chanowitz, 1979, The axial current in dimensional regularization, Nuclear Phys., B159, 225, 10.1016/0550-3213(79)90333-X Adler, 1969, Axial vector vertex in spinor electrodynamics, Phys. Rev., 177, 2426, 10.1103/PhysRev.177.2426 Bell, 1969, A PCAC puzzle: π0→γγ in the σ model, Nuovo Cimento, A60, 47, 10.1007/BF02823296 Adler, 1970, Perturbation theory anomalies Kreimer, 1990, The γ5 problem and anomalies: A Clifford algebra approach, Phys. Lett., B237, 59, 10.1016/0370-2693(90)90461-E Körner, 1992, A practicable γ5 scheme in dimensional regularization, Z. Phys., C54, 503 Kreimer, 1993 Lemoine, 1980, Radiative corrections to e+e−→W+W− in the Weinberg model, Nuclear Phys., B164, 445, 10.1016/0550-3213(80)90521-0 Fleischer, 1983, Radiative corrections to Higgs production by e+e−→ZH in the Weinberg-Salam model, Nuclear Phys., B216, 469, 10.1016/0550-3213(83)90296-1 Denner, 2000, Electroweak radiative corrections to e+e−→WW→4fermions in double pole approximation: The RACOONWW approach, Nuclear Phys., B587, 67, 10.1016/S0550-3213(00)00511-3 Denner, 2005, Complete electroweak O(α) corrections to charged-current e+e−→4fermion processes, Phys. Lett., B612, 223, 10.1016/j.physletb.2005.03.007 Ossola, 2008, On the rational terms of the one-loop amplitudes, J. High Energy Phys., 05, 004, 10.1088/1126-6708/2008/05/004 Garzelli, 2011, Feynman rules for the rational part of the electroweak 1-loop amplitudes in the Rξ gauge and in the unitary gauge, J. High Energy Phys., 01, 029, 10.1007/JHEP01(2011)029 Shao, 2011, Feynman rules for the rational part of the standard model one-loop amplitudes in the ’t Hooft-Veltman γ5 scheme, J. High Energy Phys., 09, 048, 10.1007/JHEP09(2011)048 Binoth, 2007, Algebraic evaluation of rational polynomials in one-loop amplitudes, J. High Energy Phys., 02, 013, 10.1088/1126-6708/2007/02/013 Bredenstein, 2008, NLO QCD corrections to tt̄bb̄ production at the LHC: 1. Quark–antiquark annihilation, J. High Energy Phys., 08, 108, 10.1088/1126-6708/2008/08/108 Denner, 2006, Reduction schemes for one-loop tensor integrals, Nuclear Phys., B734, 62, 10.1016/j.nuclphysb.2005.11.007 Denner, 2003, Reduction of one-loop tensor 5-point integrals, Nuclear Phys., B658, 175, 10.1016/S0550-3213(03)00184-6 van Oldenborgh, 1990, New algorithms for one-loop integrals, Z. Phys., C46, 425 Ezawa, 1992, Brown–Feynman reduction of one-loop Feynman diagrams to scalar integrals with orthonormal basis tensors, Comput. Phys. Comm., 69, 15, 10.1016/0010-4655(92)90125-I Belanger, 2006, Automatic calculations in high energy physics and Grace at one-loop, Phys. Rep., 430, 117, 10.1016/j.physrep.2006.02.001 Davydychev, 1991, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett., B263, 107, 10.1016/0370-2693(91)91715-8 Tarasov, 1996, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev., D54, 6479 Bern, 1993, Dimensionally regulated one-loop integrals, Phys. Lett., B302, 299, 10.1016/0370-2693(93)90400-C Binoth, 2000, Reduction formalism for dimensionally regulated one-loop N-point integrals, Nuclear Phys., B572, 361, 10.1016/S0550-3213(00)00040-7 Duplancic, 2004, Reduction method for dimensionally regulated one-loop N-point Feynman integrals, Eur. Phys. J., C35, 105, 10.1140/epjc/s2004-01723-7 Giele, 2004, A calculational formalism for one-loop integrals, J. High Energy Phys., 04, 029, 10.1088/1126-6708/2004/04/029 Giele, 2004, Numerical evaluation of one-loop diagrams near exceptional momentum configurations, Nuclear Phys. Proc. Suppl., 135, 275, 10.1016/j.nuclphysbps.2004.09.028 Binoth, 2005, An algebraic/numerical formalism for one-loop multi-leg amplitudes, J. High Energy Phys., 10, 015, 10.1088/1126-6708/2005/10/015 Melrose, 1965, Reduction of Feynman diagrams, Nuovo Cimento, 40, 181, 10.1007/BF02832919 Campbell, 1997, One-loop tensor integrals in dimensional regularization, Nuclear Phys., B498, 397, 10.1016/S0550-3213(97)00268-X van Neerven, 1984, Large loop integrals, Phys. Lett., 137B, 241, 10.1016/0370-2693(84)90237-5 Belanger, 2003, Full one-loop electroweak radiative corrections to single Higgs production in e+e−, Phys. Lett., B559, 252, 10.1016/S0370-2693(03)00339-3 Fleischer, 2011, A complete algebraic reduction of one-loop tensor Feynman integrals, Phys. Rev., D83, 073004 Fleischer, 2012, A solution for tensor reduction of one-loop N-point functions with N≥6, Phys. Lett., B707, 375, 10.1016/j.physletb.2011.12.060 Hahn, 1999, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Comm., 118, 153, 10.1016/S0010-4655(98)00173-8 van Oldenborgh, 1991, FF: A package to evaluate one-loop Feynman diagrams, Comput. Phys. Comm., 66, 1, 10.1016/0010-4655(91)90002-3 Hahn, 2016, FormCalc 9 and extensions, PoS, LL2016, 068 Nhung, 2009, D0C : A code to calculate scalar one-loop four-point integrals with complex masses, Comput. Phys. Comm., 180, 2258, 10.1016/j.cpc.2009.07.012 Binoth, 2009, Golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Comm., 180, 2317, 10.1016/j.cpc.2009.06.024 Cullen, 2011, Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Comm., 182, 2276, 10.1016/j.cpc.2011.05.015 Guillet, 2014, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Comm., 185, 1828, 10.1016/j.cpc.2014.03.009 Denner, 2014, COLLIER - a fortran library for one-loop integrals, PoS, LL2014, 071 Denner, 2017, COLLIER: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Comm., 212, 220, 10.1016/j.cpc.2016.10.013 Fleischer, 2011 Patel, 2015, Package-X: A mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Comm., 197, 276, 10.1016/j.cpc.2015.08.017 Patel, 2017, Package-X 2.0: A mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Comm., 218, 66, 10.1016/j.cpc.2017.04.015 del Aguila, 2004, Recursive numerical calculus of one-loop tensor integrals, J. High Energy Phys., 07, 017, 10.1088/1126-6708/2004/07/017 R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, in: Linear Colliders. Proceedings, International Conference, LCWS 2004, Paris, arXiv:hep-ph/0406105. Buccioni, 2018, On-the-fly reduction of open loops, Eur. Phys. J., C78, 70, 10.1140/epjc/s10052-018-5562-1 van Hameren, 2005, Automated computation of one-loop integrals in massless theories, Eur. Phys. J., C41, 361, 10.1140/epjc/s2005-02229-6 Mastrolia, 2008, Optimizing the reduction of one-loop amplitudes, J. High Energy Phys., 06, 030, 10.1088/1126-6708/2008/06/030 Mastrolia, 2012, Integrand reduction of one-loop scattering amplitudes through laurent series expansion, J. High Energy Phys., 06, 095, 10.1007/JHEP06(2012)095 Ossola, 2008, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, J. High Energy Phys., 0803, 042, 10.1088/1126-6708/2008/03/042 Ossola, 2007, Numerical evaluation of six-photon amplitudes, J. High Energy Phys., 07, 085, 10.1088/1126-6708/2007/07/085 Draggiotis, 2009, Feynman rules for the rational part of the QCD 1-loop amplitudes, J. High Energy Phys., 04, 072, 10.1088/1126-6708/2009/04/072 Garzelli, 2010, Feynman rules for the rational part of the electroweak 1-loop amplitudes, J. High Energy Phys., 01, 040, 10.1007/JHEP01(2010)040 Pittau, 2012, Primary Feynman rules to calculate the ϵ-dimensional integrand of any 1-loop amplitude, J. High Energy Phys., 02, 029, 10.1007/JHEP02(2012)029 Shao, 2012, Feynman rules for the rational part of one-loop QCD corrections in the MSSM, J. High Energy Phys., 06, 112, 10.1007/JHEP06(2012)112 Page, 2013, R2 Vertices for the effective ggH theory, J. High Energy Phys., 09, 078, 10.1007/JHEP09(2013)078 Bern, 2006, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev., D73, 065013 Bern, 1998, One-loop amplitudes for e+e− to four partons, Nuclear Phys., B513, 3, 10.1016/S0550-3213(97)00703-7 Anastasiou, 2007, d-Dimensional unitarity cut method, Phys. Lett., B645, 213, 10.1016/j.physletb.2006.12.022 Anastasiou, 2007, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, J. High Energy Phys., 03, 111, 10.1088/1126-6708/2007/03/111 Giele, 2008, Full one-loop amplitudes from tree amplitudes, J. High Energy Phys., 0804, 049, 10.1088/1126-6708/2008/04/049 Badger, 2009, Direct extraction of one loop rational terms, J. High Energy Phys., 01, 049, 10.1088/1126-6708/2009/01/049 Mastrolia, 2010, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, J. High Energy Phys., 1008, 080, 10.1007/JHEP08(2010)080 Peraro, 2014, Ninja: Automated integrand reduction via laurent expansion for one-loop amplitudes, Comput. Phys. Comm., 185, 2771, 10.1016/j.cpc.2014.06.017 Ellis, 2008, A numerical unitarity formalism for evaluating one-loop amplitudes, J. High Energy Phys., 0803, 003 Denner, 1991, A compact expression for the scalar one-loop four-point function, Nuclear Phys., B367, 637, 10.1016/0550-3213(91)90011-L Fleischer, 2003, A new hypergeometric representation of one-loop scalar integrals in d dimensions, Nuclear Phys., B672, 303, 10.1016/j.nuclphysb.2003.09.004 Beenakker, 1990, Infrared divergent scalar box integrals with applications in the Electroweak Standard Model, Nuclear Phys., B338, 349, 10.1016/0550-3213(90)90636-R Bern, 1994, Dimensionally regulated pentagon integrals, Nuclear Phys., B412, 751, 10.1016/0550-3213(94)90398-0 Duplancic, 2001, Dimensionally regulated one-loop box scalar integrals with massless internal lines, Eur. Phys. J., C20, 357, 10.1007/s100520100675 Duplancic, 2002, IR finite one-loop box scalar integral with massless internal lines, Eur. Phys. J., C24, 385, 10.1007/s100520200943 Ellis, 2008, Scalar one-loop integrals for QCD, J. High Energy Phys., 02, 002, 10.1088/1126-6708/2008/02/002 Guillet, 2019, A novel approach to the computation of one-loop three- and four-point functions. I - The real mass case, Prog. Theor. Exp. Phys., 2019, 113B05, 10.1093/ptep/ptz114 Guillet, 2018 Guillet, 2018 van Hameren, 2011, Oneloop: for the evaluation of one-loop scalar functions, Comput. Phys. Comm., 182, 2427, 10.1016/j.cpc.2011.06.011 Carrazza, 2016, QCDLoop: A comprehensive framework for one-loop scalar integrals, Comput. Phys. Comm., 209, 134, 10.1016/j.cpc.2016.07.033 Freitas, 2016, Numerical multi-loop integrals and applications, Prog. Part. Nucl. Phys., 90, 201, 10.1016/j.ppnp.2016.06.004 Ferroglia, 2003, All purpose numerical evaluation of one-loop multi-leg Feynman diagrams, Nuclear Phys., B650, 162, 10.1016/S0550-3213(02)01070-2 Bernshtein, 1972, The analytic continuation of generalized functions with respect to a parameter, Funct. Anal. Appl., 6, 273, 10.1007/BF01077645 Tkachov, 1997, Algebraic algorithms for multiloop calculations. The first 15 years. What’s next?, Nucl. Instrum. Methods, A389, 309, 10.1016/S0168-9002(97)00110-1 Actis, 2008, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett., B670, 12, 10.1016/j.physletb.2008.10.018 Passarino, 2007, Complete two-loop corrections to H→γγ, Phys. Lett., B655, 298, 10.1016/j.physletb.2007.09.002 Actis, 2009, NNLO computational techniques: The cases H→γγ and H→gg, Nuclear Phys., B811, 182, 10.1016/j.nuclphysb.2008.11.024 Nagy, 2003, General subtraction method for numerical calculation of one-loop QCD matrix elements, J. High Energy Phys., 09, 055, 10.1088/1126-6708/2003/09/055 Becker, 2010, Numerical NLO QCD calculations, J. High Energy Phys., 12, 013, 10.1007/JHEP12(2010)013 Becker, 2012, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett., 108, 032005, 10.1103/PhysRevLett.108.032005 Götz, 2014, NLO corrections to Z production in association with several jets, PoS, LL2014, 009 Catani, 2008, From loops to trees by-passing Feynman’s theorem, J. High Energy Phys., 09, 065, 10.1088/1126-6708/2008/09/065 Capatti, 2019, Loop tree duality for multi-loop numerical integration, Phys. Rev. Lett., 123, 151602, 10.1103/PhysRevLett.123.151602 Consoli, 1979, One-loop corrections to e+e−→e+e− in the Weinberg model, Nuclear Phys., B160, 208, 10.1016/0550-3213(79)90235-9 Strubbe, 1974, Manual for schoonschip: A CDC 6000 / 7000 program for symbolic evaluation of algebraic expressions, Comput. Phys. Comm., 8, 1, 10.1016/0010-4655(74)90081-2 van Oldenborgh, 1990, The formula manipulation program form, 545 Ruijl, 2017 Mertig, 1991, Feyn Calc: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Comm., 64, 345, 10.1016/0010-4655(91)90130-D Shtabovenko, 2016, New developments in FeynCalc 9.0, Comput. Phys. Comm., 207, 432, 10.1016/j.cpc.2016.06.008 Dittmaier, 1998, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev., D59, 016007 Murayama, 1992 Stelzer, 1994, Automatic generation of tree level helicity amplitudes, Comput. Phys. Comm., 81, 357, 10.1016/0010-4655(94)90084-1 de Aquino, 2012, ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations, Comput. Phys. Comm., 183, 2254, 10.1016/j.cpc.2012.05.004 Degrande, 2012, UFO - The Universal FeynRules Output, Comput. Phys. Comm., 183, 1201, 10.1016/j.cpc.2012.01.022 Hahn, 2001, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Comm., 140, 418, 10.1016/S0010-4655(01)00290-9 Küblbeck, 1990, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Comm., 60, 165, 10.1016/0010-4655(90)90001-H Nogueira, 1993, Automatic Feynman graph generation, J. Comput. Phys., 105, 279, 10.1006/jcph.1993.1074 Tentyukov, 2000, A Feynman diagram analyzer DIANA, Comput. Phys. Comm., 132, 124, 10.1016/S0010-4655(00)00147-8 Christensen, 2009, FeynRules - Feynman rules made easy, Comput. Phys. Comm., 180, 1614, 10.1016/j.cpc.2009.02.018 Alloul, 2014, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Comm., 185, 2250, 10.1016/j.cpc.2014.04.012 Belyaev, 2013, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Comm., 184, 1729, 10.1016/j.cpc.2013.01.014 Cullen, 2012, Automated one-loop calculations with GoSam, Eur. Phys. J., C72, 1889, 10.1140/epjc/s10052-012-1889-1 Cullen, 2014, GOsAM-2.0: a tool for automated one-loop calculations within the standard model and beyond, Eur. Phys. J., C74, 3001, 10.1140/epjc/s10052-014-3001-5 Alwall, 2011, MadGraph 5: going beyond, J. High Energy Phys., 06, 128, 10.1007/JHEP06(2011)128 Gleisberg, 2009, Event generation with SHERPA 1.1, J. High Energy Phys., 02, 007, 10.1088/1126-6708/2009/02/007 Moretti, 2001, O’Mega: An optimizing matrix element generator, 1981 Kilian, 2011, WHIZARD: Simulating multi-particle processes at LHC and ILC, Eur. Phys. J., C71, 1742, 10.1140/epjc/s10052-011-1742-y Christensen, 2012, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J., C72, 1990, 10.1140/epjc/s10052-012-1990-5 Semenov, 2016, LanHEP – A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Comm., 201, 167, 10.1016/j.cpc.2016.01.003 Boos, 2004, CompHEP 4.4: Automatic computations from Lagrangians to events, Nucl. Instrum. Methods, A534, 250, 10.1016/j.nima.2004.07.096 Berends, 1988, Recursive calculations for processes with n gluons, Nuclear Phys., B306, 759, 10.1016/0550-3213(88)90442-7 Caravaglios, 1995, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B358, 332, 10.1016/0370-2693(95)00971-M Kanaki, 2000, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Comm., 132, 306, 10.1016/S0010-4655(00)00151-X Dyson, 1949, The S matrix in quantum electrodynamics, Phys. Rev., 75, 1736, 10.1103/PhysRev.75.1736 Schwinger, 1951, On the Green’s functions of quantized fields. 1, Proc. Natl. Acad. Sci., 37, 452, 10.1073/pnas.37.7.452 Schwinger, 1951, On the Green’s functions of quantized fields. 2, Proc. Natl. Acad. Sci., 37, 455, 10.1073/pnas.37.7.455 Bern, 1994, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nuclear Phys., B425, 217, 10.1016/0550-3213(94)90179-1 Bern, 1995, Fusing gauge theory tree amplitudes into loop amplitudes, Nuclear Phys., B435, 59, 10.1016/0550-3213(94)00488-Z Britto, 2005, Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills, Nuclear Phys., B725, 275, 10.1016/j.nuclphysb.2005.07.014 Ellis, 2009, Masses, fermions and generalized D-dimensional unitarity, Nuclear Phys., B822, 270, 10.1016/j.nuclphysb.2009.07.023 van Hameren, 2009, Multi-gluon one-loop amplitudes using tensor integrals, J. High Energy Phys., 07, 088, 10.1088/1126-6708/2009/07/088 van Hameren, 2009, Automated one-loop calculations: A proof of concept, J. High Energy Phys., 0909, 106, 10.1088/1126-6708/2009/09/106 Bevilacqua, 2013, HELAC-NLO, Comput. Phys. Comm., 184, 986, 10.1016/j.cpc.2012.10.033 Berger, 2008, An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D78, 036003 Bern, 2013, Next-to-leading order W+5-jet production at the LHC, Phys. Rev., D88, 014025 Anger, 2018, NLO QCD predictions for Wbb̄ production in association with up to three light jets at the LHC, Phys. Rev., D97, 036018 Badger, 2013, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Comm., 184, 1981, 10.1016/j.cpc.2013.03.018 Badger, 2011, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Comm., 182, 1674, 10.1016/j.cpc.2011.04.008 Badger, 2014, Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev., D89, 034019 Chiesa, 2016, Automation of electroweak corrections for LHC processes, J. Phys., G43, 013002, 10.1088/0954-3899/43/1/013002 Frixione, 2015, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, J. High Energy Phys., 06, 184, 10.1007/JHEP06(2015)184 Frederix, 2018, The automation of next-to-leading order electroweak calculations, J. High Energy Phys., 07, 185, 10.1007/JHEP07(2018)185 Honeywell, 2018 Figueroa, 2018, Electroweak and QCD corrections to Z-boson production with one b jet in a massive five-flavor scheme, Phys. Rev., D98, 093002 Kallweit, 2016, NLO QCD+EW predictions for V+jets including off-shell vector-boson decays and multijet merging, J. High Energy Phys., 04, 021 Kallweit, 2017, NLO QCD+EW predictions for 2ℓ2ν diboson signatures at the LHC, J. High Energy Phys., 11, 120, 10.1007/JHEP11(2017)120 Denner, 2019, QCD and electroweak corrections to WZ scattering at the LHC, J. High Energy Phys., 06, 067, 10.1007/JHEP06(2019)067 Granata, 2017, NLO QCD+EW predictions for HV and HV+jet production including parton-shower effects, J. High Energy Phys., 09, 012, 10.1007/JHEP09(2017)012 Ježo, 2015, On the treatment of resonances in next-to-leading order calculations matched to a parton shower, J. High Energy Phys., 12, 065 Alioli, 2010, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, J. High Energy Phys., 06, 043, 10.1007/JHEP06(2010)043 Gütschow, 2018, Multi-jet merged top-pair production including electroweak corrections, Eur. Phys. J., C78, 317, 10.1140/epjc/s10052-018-5804-2 Denner, 2016, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, J. High Energy Phys., 08, 155, 10.1007/JHEP08(2016)155 Denner, 2017, Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC, J. High Energy Phys., 02, 053, 10.1007/JHEP02(2017)053 Biedermann, 2017, Large electroweak corrections to vector-boson scattering at the large hadron collider, Phys. Rev. Lett., 118, 261801, 10.1103/PhysRevLett.118.261801 Biedermann, 2017, Complete NLO corrections to W+W+ scattering and its irreducible background at the LHC, J. High Energy Phys., 10, 124, 10.1007/JHEP10(2017)124 Chiesa, 2019, An event generator for same-sign W-boson scattering at the LHC including electroweak corrections, Eur. Phys. J., C79, 788, 10.1140/epjc/s10052-019-7290-6 Schönherr, 2018, Next-to-leading order electroweak corrections to off-shell WWW production at the LHC, J. High Energy Phys., 07, 076, 10.1007/JHEP07(2018)076 Degrande, 2018, Automated computation of one-loop amplitudes, Ann. Rev. Nucl. Part. Sci., 68, 291, 10.1146/annurev-nucl-101917-020959 Bredenstein, 2010, NLO QCD corrections to tt̄bb̄ production at the LHC: 2. full hadronic results, J. High Energy Phys., 03, 021, 10.1007/JHEP03(2010)021 Denner, 2012, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, J. High Energy Phys., 1210, 110, 10.1007/JHEP10(2012)110 ’t Hooft, 1974, A planar diagram theory for strong interactions, Nuclear Phys., B72, 461 Kanaki, 2000, HELAC-PHEGAS: Automatic computation of helicity amplitudes and cross-sections, 169 Maltoni, 2003, Color flow decomposition of QCD amplitudes, Phys. Rev., D67, 014026 Denner, 2018, Recola2: Recursive computation of one-loop amplitudes 2, Comput. Phys. Comm., 224, 346, 10.1016/j.cpc.2017.11.013 Denner, 2017, NLO electroweak corrections in extended Higgs sectors with RECOLA2, J. High Energy Phys., 07, 087, 10.1007/JHEP07(2017)087 Hirschi, 2011, Automation of one-loop QCD corrections, J. High Energy Phys., 1105, 044, 10.1007/JHEP05(2011)044 Degrande, 2015, Automatic evaluation of UV and R2 terms for beyond the standard model Lagrangians: a proof-of-principle, Comput. Phys. Comm., 197, 239, 10.1016/j.cpc.2015.08.015 Hirschi, 2015, Automated event generation for loop-induced processes, J. High Energy Phys., 10, 146, 10.1007/JHEP10(2015)146 Baglio, 2013, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev., D88, 113005 Billoni, 2013, Next-to-leading order electroweak corrections to pp→W+W−→4leptons at the LHC in double-pole approximation, J. High Energy Phys., 12, 043, 10.1007/JHEP12(2013)043 Biedermann, 2016, Next-to-leading-order electroweak corrections to pp→W+W−→ 4 leptons at the LHC, J. High Energy Phys., 06, 065, 10.1007/JHEP06(2016)065 Shen, 2017, NLO QCD and electroweak corrections to WWW production at the LHC, Phys. Rev., D95, 073005 Dittmaier, 2017, Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders, J. High Energy Phys., 09, 034, 10.1007/JHEP09(2017)034 Dittmaier, 2020, Next-to-leading-order QCD and electroweak corrections to triple-W production with leptonic decays at the LHC, J. High Energy Phys., 2 Nhung, 2013, NLO corrections to WWZ production at the LHC, J. High Energy Phys., 12, 096, 10.1007/JHEP12(2013)096 Frederix, 2017, The complete NLO corrections to dijet hadroproduction, J. High Energy Phys., 04, 076, 10.1007/JHEP04(2017)076 Dror, 2016, Strong tW scattering at the LHC, J. High Energy Phys., 01, 071, 10.1007/JHEP01(2016)071 Frederix, 2018, Large NLO corrections in tt̄W± and tt̄tt̄ hadroproduction from supposedly subleading EW contributions, J. High Energy Phys., 02, 031, 10.1007/JHEP02(2018)031 Kinoshita, 1962, Mass singularities of Feynman amplitudes, J. Math. Phys., 3, 650, 10.1063/1.1724268 Bloch, 1937, Note on the radiation field of the electron, Phys. Rev., 52, 54, 10.1103/PhysRev.52.54 Lee, 1964, Degenerate systems and mass singularities, Phys. Rev., 133, B1549, 10.1103/PhysRev.133.B1549 Yennie, 1961, The infrared divergence phenomena and high-energy processes, Ann. Physics, 13, 379, 10.1016/0003-4916(61)90151-8 Dittmaier, 2008, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nuclear Phys., B800, 146, 10.1016/j.nuclphysb.2008.03.010 Catani, 2002, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nuclear Phys., B627, 189, 10.1016/S0550-3213(02)00098-6 Giele, 1993, Higher-order corrections to jet cross-sections in hadron colliders, Nuclear Phys., B403, 633, 10.1016/0550-3213(93)90365-V Keller, 1999, Next-to-leading order cross-sections for tagged reactions, Phys. Rev., D59, 114004 Baur, 1999, Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev., D59, 013002 Basso, 2016, Techniques for the treatment of IR divergences in decay processes at NLO and application to the top-quark decay, Eur. Phys. J., C76, 56, 10.1140/epjc/s10052-016-3878-2 Gaunt, 2015, N-jettiness subtractions for NNLO QCD calculations, J. High Energy Phys., 09, 058, 10.1007/JHEP09(2015)058 Stewart, 2010, N-Jettiness: An inclusive event shape to veto jets, Phys. Rev. Lett., 105, 092002, 10.1103/PhysRevLett.105.092002 Ellis, 1981, The perturbative calculation of jet structure in e+e− annihilation, Nuclear Phys., B178, 421, 10.1016/0550-3213(81)90165-6 Catani, 1996, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett., B378, 287, 10.1016/0370-2693(96)00425-X Phaf, 2001, Dipole formalism with heavy fermions, J. High Energy Phys., 04, 006, 10.1088/1126-6708/2001/04/006 Frederix, 2009, Automation of next-to-leading order computations in QCD: The FKS subtraction, J. High Energy Phys., 10, 003, 10.1088/1126-6708/2009/10/003 Schönherr, 2018, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J., C78, 119, 10.1140/epjc/s10052-018-5600-z Barze, 2012, Implementation of electroweak corrections in the POWHEG BOX: single W production, J. High Energy Phys., 04, 037, 10.1007/JHEP04(2012)037 Mück, 2017, Resonance-improved parton-shower matching for the Drell-Yan process including electroweak corrections, J. High Energy Phys., 05, 090, 10.1007/JHEP05(2017)090 Gehrmann-De Ridder, 2005, Antenna subtraction at NNLO, J. High Energy Phys., 09, 056 Catani, 2007, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., 98, 222002, 10.1103/PhysRevLett.98.222002 Czakon, 2010, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett., B693, 259, 10.1016/j.physletb.2010.08.036 Boughezal, 2012, A subtraction scheme for NNLO computations, Phys. Rev., D85, 034025 Currie, 2013, Infrared structure at NNLO using antenna subtraction, J. High Energy Phys., 04, 066, 10.1007/JHEP04(2013)066 Cacciari, 2015, Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett., 115, 082002, 10.1103/PhysRevLett.115.082002 Magnea, 2018, Local analytic sector subtraction at NNLO, J. High Energy Phys., 12, 107, 10.1007/JHEP12(2018)107 Engel, 2020, A subtraction scheme for massive QED, J. High Energy Phys., 01, 085, 10.1007/JHEP01(2020)085 ’t Hooft, 1979, Scalar one-loop integrals, Nuclear Phys., B153, 365 Frederix, 2008, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, J. High Energy Phys., 09, 122, 10.1088/1126-6708/2008/09/122 Hasegawa, 2010, AutoDipole: Automated generation of dipole subtraction terms, Comput. Phys. Comm., 181, 1802, 10.1016/j.cpc.2010.06.044 Czakon, 2009, Polarizing the dipoles, J. High Energy Phys., 08, 085, 10.1088/1126-6708/2009/08/085 Frederix, 2010, Integrated dipoles with MadDipole in the MadGraph framework, J. High Energy Phys., 06, 086, 10.1007/JHEP06(2010)086 Gehrmann, 2010, Photon radiation with MadDipole, J. High Energy Phys., 12, 050, 10.1007/JHEP12(2010)050 Nason, 2004, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys., 11, 040, 10.1088/1126-6708/2004/11/040 Frixione, 2007, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys., 11, 070, 10.1088/1126-6708/2007/11/070 Catani, 2001, One-loop singular behaviour of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett., B500, 149, 10.1016/S0370-2693(01)00065-X Ellis, 1996, vol. 8, 1 Collins, 2011, Foundations of perturbative QCD, 1 Gribov, 1972, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys., 15, 438 Altarelli, 1977, Asymptotic freedom in parton language, Nuclear Phys., B126, 298, 10.1016/0550-3213(77)90384-4 Dokshitzer, 1977, Calculation of the structure functions for deep inelastic scattering and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys.—JETP, 46, 641 Altarelli, 1978, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nuclear Phys., B143, 521, 10.1016/0550-3213(78)90067-6 Bertone, 2015, On the impact of lepton PDFs, J. High Energy Phys., 11, 194, 10.1007/JHEP11(2015)194 Spiesberger, 1995, QED radiative corrections for parton distributions, Phys. Rev., D52, 4936 Roth, 2004, QED corrections to the evolution of parton distributions, Phys. Lett., B590, 190, 10.1016/j.physletb.2004.04.009 Bertone, 2014, Apfel: A PDF evolution library with QED corrections, Comput. Phys. Comm., 185, 1647, 10.1016/j.cpc.2014.03.007 Martin, 2005, Parton distributions incorporating QED contributions, Eur. Phys. J., C39, 155, 10.1140/epjc/s2004-02088-7 Ball, 2013, Parton distributions with QED corrections, Nuclear Phys., B877, 290, 10.1016/j.nuclphysb.2013.10.010 Ball, 2015, Parton distributions for the LHC run II, J. High Energy Phys., 04, 040, 10.1007/JHEP04(2015)040 Schmidt, 2016, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev., D93, 114015 Manohar, 2016, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett., 117, 242002, 10.1103/PhysRevLett.117.242002 Manohar, 2017, The photon content of the proton, J. High Energy Phys., 12, 046, 10.1007/JHEP12(2017)046 Harland-Lang, 2016, The photon PDF in events with rapidity gaps, Eur. Phys. J., C76, 255, 10.1140/epjc/s10052-016-4100-2 Giuli, 2017, The photon PDF from high-mass Drell-Yan data at the LHC, Eur. Phys. J., C77, 400, 10.1140/epjc/s10052-017-4931-5 Buckley, 2015, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J., C75, 132, 10.1140/epjc/s10052-015-3318-8 Harland-Lang, 2016, Sudakov effects in photon-initiated processes, Phys. Lett., B761, 20, 10.1016/j.physletb.2016.08.004 Carloni Calame, 2007, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, J. High Energy Phys., 10, 109 Dittmaier, 2010, Radiative corrections to the neutral-current Drell-Yan process in the standard model and its minimal supersymmetric extension, J. High Energy Phys., 01, 060, 10.1007/JHEP01(2010)060 Boughezal, 2014, Disentangling radiative corrections using the high-mass Drell-Yan process at the LHC, Phys. Rev., D89, 034030 Bierweiler, 2012, Electroweak corrections to W-boson pair production at the LHC, J. High Energy Phys., 11, 093, 10.1007/JHEP11(2012)093 Bierweiler, 2013, Vector-boson pair production at the LHC to O(α3) accuracy, J. High Energy Phys., 12, 071, 10.1007/JHEP12(2013)071 Glover, 1994, Measuring the photon fragmentation function at LEP, Z. Phys., C62, 311 Frixione, 1998, Isolated photons in perturbative QCD, Phys. Lett., B429, 369, 10.1016/S0370-2693(98)00454-7 Denner, 2010, Electroweak corrections to hadronic event shapes and jet production in e+e− annihilation, Nuclear Phys., B836, 37, 10.1016/j.nuclphysb.2010.04.009 Glover, 1994, The photon + 1 jet event rate with the cone algorithm in hadronic events at LEP, Phys. Lett., B334, 208, 10.1016/0370-2693(94)90613-0 Buskulic, 1996, First measurement of the quark-to-photon fragmentation function, Z. Phys., C69, 365 Denner, 2009, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, J. High Energy Phys., 08, 075, 10.1088/1126-6708/2009/08/075 Denner, 2011, Electroweak corrections to dilepton + jet production at hadron colliders, J. High Energy Phys., 06, 069, 10.1007/JHEP06(2011)069 Denner, 2013, Electroweak corrections to monojet production at the LHC, Eur. Phys. J., C73, 2297, 10.1140/epjc/s10052-013-2297-x Denner, 2015, NLO QCD and electroweak corrections to W+γ production with leptonic W-boson decays, J. High Energy Phys., 04, 018, 10.1007/JHEP04(2015)018 Denner, 2016, NLO QCD and electroweak corrections to Z+γ production with leptonic Z-boson decays, J. High Energy Phys., 02, 057, 10.1007/JHEP02(2016)057 Campbell, 2011, Vector boson pair production at the LHC, J. High Energy Phys., 07, 018, 10.1007/JHEP07(2011)018 Denner, 2019, Low-virtuality photon transitions γ∗→ff̄ and the photon-to-jet conversion function, Phys. Lett., B798, 134951, 10.1016/j.physletb.2019.134951 Chen, 1975, Secondary reactions in electron-positron (electron) collisions, Phys. Rev., D11, 58 Berends, 1988, The standard Z peak, Phys. Lett., B203, 177, 10.1016/0370-2693(88)91593-6 Bardin, 1989, A realistic approach to the standard Z peak, Z. Phys., C44, 493 Bardin, 1989, Z line shape, 89 Montagna, 1993, On a semianalytical and realistic approach to e+e− annihilation into fermion pairs and to Bhabha scattering within the minimal standard model at LEP energies, Nuclear Phys., B401, 3, 10.1016/0550-3213(93)90297-3 Montagna, 1999, TOPAZ0 4.0: A new version of a computer program for evaluation of deconvoluted and realistic observables at LEP 1 and LEP 2, Comput. Phys. Comm., 117, 278, 10.1016/S0010-4655(98)00080-0 Bardin, 2001, ZFITTER v.6.21: A semianalytical program for fermion pair production in e+e− annihilation, Comput. Phys. Comm., 133, 229, 10.1016/S0010-4655(00)00152-1 Boudjema, 1996, Standard model processes, 207 Montagna, 1993, TOPAZ0: A program for computing observables and for fitting cross-sections and forward–backward asymmetries around the Z0 peak, Comput. Phys. Comm., 76, 328, 10.1016/0010-4655(93)90060-P Montagna, 1996, TOPAZO 2.0: A program for computing deconvoluted and realistic observables around the Z0 peak, Comput. Phys. Comm., 93, 120, 10.1016/0010-4655(95)00127-1 Montagna, 1998, Precision physics at LEP, Riv. Nuovo Cimento, 21, 1, 10.1007/BF02845546 Beenakker, 1998, Final-state radiation and line shape distortion in resonance pair production, Phys. Lett., B435, 233, 10.1016/S0370-2693(98)00760-6 Blümlein, 2019, The O(α2) initial state QED corrections to e+e− annihilation to a neutral vector boson revisited, Phys. Lett. B, 791, 206, 10.1016/j.physletb.2019.02.038 Blümlein, 2020, The effects of O(α2) initial state QED corrections to e+e−→γ∗∕Z∗ at very high luminosity colliders, Phys. Lett. B, 801, 135196, 10.1016/j.physletb.2019.135196 Berends, 1988, Higher order radiative corrections at LEP energies, Nucl. Phys. B, 297, 429, 10.1016/0550-3213(88)90313-6 Aad, 2011, Measurement of the transverse momentum distribution of Z∕γ∗ bosons in proton-proton collisions at s=7 TeV with the ATLAS detector, Phys. Lett., B705, 415, 10.1016/j.physletb.2011.10.018 von Weizsäcker, 1934, Radiation emitted in collisions of very fast electrons, Z. Phys., 88, 612 Williams, 1934, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev., 45, 729, 10.1103/PhysRev.45.729 Aurenche, 1996, γγ Physics, 291 Accomando, 1998, Physics with e+e− linear colliders, Phys. Rep., 299, 1, 10.1016/S0370-1573(97)00086-0 Aguilar-Saavedra, 2001 Montagna, 1991, QED radiative corrections to lepton scattering in the structure function formalism, Nuclear Phys., B357, 390, 10.1016/0550-3213(91)90474-C Cacciari, 1992, QED structure functions: A systematic approach, Europhys. Lett., 17, 123, 10.1209/0295-5075/17/2/007 Arbuzov, 1999, Nonsinglet splitting functions in QED, Phys. Lett., B470, 252, 10.1016/S0370-2693(99)01290-3 Blümlein, 2005, Universal higher order QED corrections to polarized lepton scattering, Nucl. Phys. B, 708, 467, 10.1016/j.nuclphysb.2004.12.001 Blümlein, 2007, Universal higher order singlet QED corrections to unpolarized lepton scattering, Eur. Phys. J. C, 51, 317, 10.1140/epjc/s10052-007-0300-0 Beenakker, 1996, WW Cross-sections and distributions, 79 Frixione, 2019, Initial conditions for electron and photon structure and fragmentation functions, J. High Energy Phys., 11, 158, 10.1007/JHEP11(2019)158 Bertone, 2020, The partonic structure of the electron at the next-to-leading logarithmic accuracy in QED, J. High Energy Phys., 3, 135, 10.1007/JHEP03(2020)135 Seymour, 1992, Photon radiation in final state parton showering, Z. Phys., C56, 161 Hamilton, 2006, Simulation of QED radiation in particle decays using the YFS formalism, J. High Energy Phys., 07, 010, 10.1088/1126-6708/2006/07/010 Sjöstrand, 2015, An introduction to PYTHIA 8.2, Comput. Phys. Comm., 191, 159, 10.1016/j.cpc.2015.01.024 Schönherr, 2008, Soft photon radiation in particle decays in SHERPA, J. High Energy Phys., 12, 018, 10.1088/1126-6708/2008/12/018 Höche, 2010, Hard photon production and matrix-element parton-shower merging, Phys. Rev., D81, 034026 Barberio, 1991, PHOTOS: A universal Monte Carlo for QED radiative corrections in decays, Comput. Phys. Comm., 66, 115, 10.1016/0010-4655(91)90012-A Barberio, 1994, PHOTOS: A universal Monte Carlo for QED radiative corrections. version 2.0, Comput. Phys. Comm., 79, 291, 10.1016/0010-4655(94)90074-4 Golonka, 2006, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J., C45, 97, 10.1140/epjc/s2005-02396-4 Carloni Calame, 2004, Higher-order QED corrections to W-boson mass determination at hadron colliders, Phys. Rev., D69, 037301 Carloni Calame, 2005, Multiple photon corrections to the neutral-current Drell-Yan process, J. High Energy Phys., 05, 019 Carloni Calame, 2006, Precision electroweak calculation of the charged current Drell-Yan process, J. High Energy Phys., 12, 016 Carloni Calame, 2017, Precision measurement of the W-boson mass: Theoretical contributions and uncertainties, Phys. Rev., D96, 093005 Bernaciak, 2012, Combining next-to-leading order QCD and electroweak radiative corrections to W-boson production at hadron colliders in the POWHEG framework, Phys. Rev., D85, 093003 Płaczek, 2003, Multiphoton radiation in leptonic W-boson decays, Eur. Phys. J., C29, 325, 10.1140/epjc/s2003-01223-4 Fornal, 2018, Electroweak gauge boson parton distribution gunctions, J. High Energy Phys., 05, 106, 10.1007/JHEP05(2018)106 Bauer, 2018, Standard model fragmentation functions at very high energies, J. High Energy Phys., 11, 030, 10.1007/JHEP11(2018)030 Christiansen, 2014, Weak gauge boson radiation in parton showers, J. High Energy Phys., 04, 115, 10.1007/JHEP04(2014)115 Krauss, 2014, Measuring collinear W emissions inside jets, Phys. Rev., D89, 114006 Chen, 2017, Electroweak splitting functions and high energy showering, J. High Energy Phys., 11, 093, 10.1007/JHEP11(2017)093 Tarrach, 1981, The pole mass in perturbative QCD, Nuclear Phys., B183, 384, 10.1016/0550-3213(81)90140-1 Brock, 1995, Handbook of perturbative QCD: Version 1.0, Rev. Modern Phys., 67, 157, 10.1103/RevModPhys.67.157 Marciano, 1979, The weak mixing angle and grand unified gauge theories, Phys. Rev., D20, 274 Sirlin, 1984, O(α2) corrections to the muon lifetime, mW, and mZ in the SU(2)L×U(1) theory, Phys. Rev., D29, 89 Eidelman, 1995, Hadronic contributions to (g−2) of the leptons and to the effective fine structure constant α(MZ2), Z. Phys., C67, 585 Veltman, 1977, Limit on mass differences in the Weinberg model, Nuclear Phys., B123, 89, 10.1016/0550-3213(77)90342-X Chanowitz, 1978, Weak interactions of ultraheavy fermions, Phys. Lett., 78B, 285, 10.1016/0370-2693(78)90024-2 Consoli, 1989, The effect of the top quark on the MW-MZ interdependence and possible decoupling of heavy fermions from low-energy physics, Phys. Lett., B227, 167, 10.1016/0370-2693(89)91301-4 Fanchiotti, 1993, Incorporation of QCD effects in basic corrections of the electroweak theory, Phys. Rev., D48, 307 Sirlin, 1989, Role of sin2θW(mZ) at the Z0 peak, Phys. Lett., B232, 123, 10.1016/0370-2693(89)90568-6 Marciano, 1991, Quantitative tests of the standard model of electroweak interactions, Ann. Rev. Nucl. Part. Sci., 41, 469, 10.1146/annurev.ns.41.120191.002345 Sirlin, 2013, Radiative corrections in precision electroweak physics: A historical perspective, Rev. Modern Phys., 85, 263, 10.1103/RevModPhys.85.263 Sarantakos, 1983, Radiative corrections to neutrino-lepton scattering in the SU(2)L⊗U(1) theory, Nuclear Phys., B217, 84, 10.1016/0550-3213(83)90079-2 Fanchiotti, 1990, Accurate determination of sin2θˆW(mZ), Phys. Rev., D41, 319 Degrassi, 1991, Relations between the on-shell and MS¯ frameworks and the mW-mZ interdependence, Nuclear Phys., B351, 49, 10.1016/0550-3213(91)90081-8 Melia, 2010, Next-to-leading order QCD predictions for W+W+jj production at the LHC, J. High Energy Phys., 12, 053, 10.1007/JHEP12(2010)053 Melia, 2011, NLO QCD corrections for W+W− pair production in association with two jets at hadron colliders, Phys. Rev., D83, 114043 Greiner, 2012, NLO QCD corrections to the production of W+W− plus two jets at the LHC, Phys. Lett., B713, 277, 10.1016/j.physletb.2012.06.027 Campanario, 2013, WZ Production in association with two jets at next-to-leading order in QCD, Phys. Rev. Lett., 111, 052003, 10.1103/PhysRevLett.111.052003 Campanario, 2014, Next-to-leading order QCD corrections to W+W+ and W−W− production in association with two jets, Phys. Rev., D89, 054009 Jäger, 2006, Next-to-leading-order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev., D73, 113006 Bozzi, 2007, Next-to-leading-order QCD corrections to W+Z and W−Z production via vector-boson fusion, Phys. Rev., D75, 073004 Jäger, 2009, Next-to-leading order QCD corrections to W+W+jj and W−W−jj production via weak-boson fusion, Phys. Rev., D80, 034022 Jäger, 2011, NLO corrections to electroweak and QCD production of W+W+ plus two jets in the POWHEGBOX, J. High Energy Phys., 11, 055, 10.1007/JHEP11(2011)055 Denner, 2012, NLO QCD corrections to W+W+jj production in vector-boson fusion at the LHC, Phys. Rev., D86, 114014 Baglio, 2014 Dittmaier, 2012, Weak radiative corrections to dijet production at hadron colliders, J. High Energy Phys., 11, 095, 10.1007/JHEP11(2012)095 Biedermann, 2017, Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC, J. High Energy Phys., 01, 033, 10.1007/JHEP01(2017)033 Cornwall, 1974, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev., D10, 1145 Chanowitz, 1985, The TeV physics of strongly interacting W’s and Z’s, Nuclear Phys., B261, 379, 10.1016/0550-3213(85)90580-2 Gounaris, 1986, Relationship between longitudinally polarized vector bosons and their unphysical scalar partners, Phys. Rev., D34, 3257 He, 1994, Further investigation on the precise formulation of the equivalence theorem, Phys. Rev., D49, 4842 Yao, 1988, Modification of the equivalence theorem due to loop corrections, Phys. Rev., D38, 2237 Kuroda, 1991, Direct one-loop renormalization of SU(2)L×U(1)Y four-fermion processes and running coupling constants, Nuclear Phys., B350, 25, 10.1016/0550-3213(91)90252-S Degrassi, 1992, Gauge-invariant self-energies and vertex parts of the standard model in the pinch technique framework, Phys. Rev., D46, 3104 Beenakker, 1993, High-energy approximation for on-shell W-pair production, Nuclear Phys., B410, 245, 10.1016/0550-3213(93)90434-Q Denner, 1995, Radiative corrections to γγ→W+W− in the electroweak standard model, Nuclear Phys., B452, 80, 10.1016/0550-3213(95)00344-R Denner, 1997, Radiative corrections to ZZ→ZZ in the electroweak standard model, Phys. Rev., D56, 117 Beccaria, 1998, Rising bosonic electroweak virtual effects at high-energy e+e− colliders, Phys. Rev., D58, 093014 Fadin, 2000, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev., D61, 094002 Kühn, 2000, Summing up subleading Sudakov logarithms, Eur. Phys. J., C17, 97, 10.1007/s100520000462 Ciafaloni, 2000, Electroweak Sudakov form-factors and nonfactorizable soft QED effects at NLC energies, Phys. Lett., B476, 49, 10.1016/S0370-2693(00)00121-0 Sudakov, 1956, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys.—JETP, 3, 65 Baur, 2007, Weak boson emission in hadron collider processes, Phys. Rev., D75, 013005 Ciafaloni, 2000, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett., 84, 4810, 10.1103/PhysRevLett.84.4810 Hori, 2000, Electroweak Sudakov at two loop level, Phys. Lett., B491, 275, 10.1016/S0370-2693(00)01027-3 Denner, 2001, One-loop leading logarithms in electroweak radiative corrections. 1. results, Eur. Phys. J., C18, 461, 10.1007/s100520100551 Denner, 2001, One-loop leading logarithms in electroweak radiative corrections. 2. factorization of collinear singularities, Eur. Phys. J., C21, 63, 10.1007/s100520100721 Melles, 2003, Electroweak radiative corrections in high-energy processes, Phys. Rep., 375, 219, 10.1016/S0370-1573(02)00550-1 Melles, 2002, Resummation of angular-dependent corrections in spontaneously broken gauge theories, Eur. Phys. J., C24, 193, 10.1007/s100520200942 Beenakker, 2002, Electroweak two-loop Sudakov logarithms for on-shell fermions and bosons, Nuclear Phys., B630, 3, 10.1016/S0550-3213(02)00171-2 Denner, 2003, Two-loop electroweak angular-dependent logarithms at high energies, Nuclear Phys., B662, 299, 10.1016/S0550-3213(03)00307-9 Jantzen, 2005, Two-loop electroweak logarithms, Phys. Rev., D72, 051301 Jantzen, 2005, Two-loop electroweak logarithms in four-fermion processes at high energy, Nuclear Phys., B731, 188, 10.1016/j.nuclphysb.2005.10.010 Denner, 2007, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nuclear Phys., B761, 1, 10.1016/j.nuclphysb.2006.10.014 Kühn, 2001, Next-to-next-to-leading logarithms in four fermion electroweak processes at high energy, Nuclear Phys., B616, 286, 10.1016/S0550-3213(01)00454-0 Denner, 2008, Two-loop electroweak next-to-leading logarithms for processes involving heavy quarks, J. High Energy Phys., 11, 062, 10.1088/1126-6708/2008/11/062 Chiu, 2008, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett., 100, 021802, 10.1103/PhysRevLett.100.021802 Chiu, 2008, Electroweak corrections using effective field theory: Applications to the LHC, Phys. Rev., D78, 073006 Bauer, 2000, Summing Sudakov logarithms in B→Xsγ in effective field theory, Phys. Rev., D63, 014006 Bauer, 2001, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev., D63, 114020 Bauer, 2001, Invariant operators in collinear effective theory, Phys. Lett., B516, 134, 10.1016/S0370-2693(01)00902-9 Bauer, 2002, Soft collinear factorization in effective field theory, Phys. Rev., D65, 054022 Chiu, 2009, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev., D80, 094013 Chiu, 2010, Soft and collinear functions for the standard model, Phys. Rev., D81, 014023 Fuhrer, 2010, Radiative corrections to longitudinal and transverse gauge boson and Higgs production, Phys. Rev., D81, 093005 Roth, 1996, High-energy approximation of one-loop Feynman integrals, Nuclear Phys., B479, 495, 10.1016/0550-3213(96)00435-X Accomando, 2002, Electroweak-correction effects in gauge-boson pair production at the CERN LHC, Phys. Rev., D65, 073003 Accomando, 2007, Logarithmic electroweak corrections to e+e−→νeν̄eW+W−, J. High Energy Phys., 03, 078, 10.1088/1126-6708/2007/03/078 Dawson, 1985, The effective W approximation, Nuclear Phys., B249, 42, 10.1016/0550-3213(85)90038-0 Kane, 1984, The effective W±, Z0 approximation for high-energy collisions, Phys. Lett., 148B, 367, 10.1016/0370-2693(84)90105-9 Lindfors, 1985, Distribution functions for heavy vector bosons inside colliding particle beams, Z. Phys., C28, 427 Kuss, 1996, Luminosities for vector-boson–vector-boson scattering at high-energy colliders, Phys. Rev., D53, 6078 Accomando, 2005, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nuclear Phys., B706, 325, 10.1016/j.nuclphysb.2004.11.019 Kühn, 2005, Logarithmic electroweak corrections to hadronic Z+1jet production at large transverse momentum, Phys. Lett., B609, 277, 10.1016/j.physletb.2005.01.059 Kühn, 2006, Electroweak corrections to hadronic photon production at large transverse momenta, J. High Energy Phys., 03, 059, 10.1088/1126-6708/2006/03/059 Kühn, 2007, Electroweak corrections to large transverse momentum production of W bosons at the LHC, Phys. Lett., B651, 160, 10.1016/j.physletb.2007.06.028 Mangano, 2003, ALPGEN, a generator for hard multiparton processes in hadronic collisions, J. High Energy Phys., 07, 001, 10.1088/1126-6708/2003/07/001 Chiesa, 2013, Electroweak Sudakov corrections to new physics searches at the LHC, Phys. Rev. Lett., 111, 121801, 10.1103/PhysRevLett.111.121801 Kirschner, 1982, Double-logarithmic asymptotics of quark scattering amplitudes with flavor exchange, Phys. Rev., D26, 1202 Gribov, 1967, Bremsstrahlung of hadrons at high energies, Sov. J. Nucl. Phys., 5, 280 Lipatov, 1988, Massless particle bremsstrahlung theorems for high-energy hadron interactions, Nuclear Phys., B307, 705, 10.1016/0550-3213(88)90105-8 Del Duca, 1990, High-energy bremsstrahlung theorems for soft photons, Nuclear Phys., B345, 369, 10.1016/0550-3213(90)90392-Q Melles, 2000, Mass gap effects and higher order electroweak Sudakov logarithms, Phys. Lett., B495, 81, 10.1016/S0370-2693(00)01234-X Collins, 1980, Algorithm to compute corrections to the Sudakov form factor, Phys. Rev., D22, 1478 Sen, 1981, Asymptotic behavior of the Sudakov form factor in QCD, Phys. Rev., D24, 3281 Sen, 1983, Asymptotic behavior of the fixed-angle on-shell quark scattering amplitudes in non-abelian gauge theories, Phys. Rev., D28, 860 Kühn, 2008, Next-to-next-to-leading electroweak logarithms in W-pair production at ILC, Nuclear Phys., B795, 277, 10.1016/j.nuclphysb.2007.11.019 Kühn, 2011, Next-to-next-to-leading electroweak logarithms for W-pair production at LHC, J. High Energy Phys., 06, 143, 10.1007/JHEP06(2011)143 Chiu, 2008, Electroweak corrections to high energy processes using effective field theory, Phys. Rev., D77, 053004 Manohar, 2015, Non-cancellation of electroweak logarithms in high-energy scattering, Phys. Lett., B740, 179, 10.1016/j.physletb.2014.11.050 Manohar, 2003, Deep inelastic scattering as x→1 using soft collinear effective theory, Phys. Rev., D68, 114019 Denner, 2003, Electroweak radiative corrections to single Higgs-boson production in e+e− annihilation, Phys. Lett., B560, 196, 10.1016/S0370-2693(03)00370-8 Ciccolini, 2003, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev., D68, 073003 Ciccolini, 2008, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev., D77, 013002 Figy, 2012, Higgs production via weak boson fusion in the standard model and the MSSM, J. High Energy Phys., 02, 105, 10.1007/JHEP02(2012)105 Denner, 2012, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, J. High Energy Phys., 03, 075, 10.1007/JHEP03(2012)075 Accomando, 2006, Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J., C47, 125, 10.1140/epjc/s2006-02521-y Ciafaloni, 2006, The importance of weak boson emission at LHC, J. High Energy Phys., 09, 055, 10.1088/1126-6708/2006/09/055 Bell, 2010, Electroweak Sudakov logarithms and real gauge-boson radiation in the TeV region, Eur. Phys. J., C70, 659, 10.1140/epjc/s10052-010-1489-x Stirling, 2013, Electroweak corrections and Bloch-Nordsieck violations in 2-to-2 processes at the LHC, J. High Energy Phys., 04, 155, 10.1007/JHEP04(2013)155 Bauer, 2016, Resummation of electroweak Sudakov logarithms for real radiation, J. High Energy Phys., 09, 025, 10.1007/JHEP09(2016)025 Manohar, 2018, Electroweak logarithms in inclusive cross sections, J. High Energy Phys., 08, 137, 10.1007/JHEP08(2018)137 Dittmaier, 2002, Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev., D65, 073007 Brensing, 2008, Radiative corrections to W-boson hadroproduction: Higher-order electroweak and supersymmetric effects, Phys. Rev., D77, 073006 Cutkosky, 1960, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys., 1, 429, 10.1063/1.1703676 Veltman, 1963, Unitarity and causality in a renormalizable field theory with unstable particles, Physica, 29, 186, 10.1016/S0031-8914(63)80277-3 Denner, 2015, The complex-mass scheme and unitarity in perturbative quantum field theory, Eur. Phys. J., C75, 377, 10.1140/epjc/s10052-015-3579-2 F.V. Tkachov, Perturbation theory for unstable fundamental fields, in: Proc. of the 32nd PNPI Winter School on Nuclear and Particle Physics, St. Petersburg, 1998, pp. 166, arXiv:hep-ph/9802307. Nekrasov, 2009, Modified perturbation theory for pair production and decay of fundamental unstable particles, Int. J. Mod. Phys., A24, 6071, 10.1142/S0217751X09047673 Kauer, 2007, Narrow-width approximation limitations, Phys. Lett., B649, 413, 10.1016/j.physletb.2007.04.036 Uhlemann, 2009, Narrow-width approximation accuracy, Nuclear Phys., B814, 195, 10.1016/j.nuclphysb.2009.01.022 Berdine, 2007, Breakdown of the narrow width approximation for new physics, Phys. Rev. Lett., 99, 111601, 10.1103/PhysRevLett.99.111601 Fuchs, 2015, Interference effects in BSM processes with a generalised narrow-width approximation, Eur. Phys. J., C75, 254, 10.1140/epjc/s10052-015-3472-z Beenakker, 1997, The fermion-loop scheme for finite width effects in e+e− annihilation into four fermions, Nuclear Phys., B500, 255, 10.1016/S0550-3213(97)00316-7 Dittmaier, 2002, LUSIFER: A LUcid approach to six FERmion production, Nuclear Phys., B642, 307, 10.1016/S0550-3213(02)00640-5 Kurihara, 1995, e+e−→e−ν̄eud̄ From LEP to linear collider energies, Phys. Lett., B349, 367, 10.1016/0370-2693(95)00298-Y Passarino, 2000, Single-W production and fermion-loop scheme: numerical results, Nuclear Phys., B578, 3, 10.1016/S0550-3213(00)00172-3 Argyres, 1995, Stable calculations for unstable particles: Restoring gauge invariance, Phys. Lett., B358, 339, 10.1016/0370-2693(95)01002-8 Gambino, 2000, The Nielsen identities of the SM and the definition of mass, Phys. Rev., D62, 076002 Grassi, 2002, Width and partial widths of unstable particles in the light of the Nielsen identities, Phys. Rev., D65, 085001 Sirlin, 1991, Theoretical considerations concerning the Z0 mass, Phys. Rev. Lett., 67, 2127, 10.1103/PhysRevLett.67.2127 Bardin, 1988, Energy-dependent width effects in e+e− annihilation near the Z-boson pole, Phys. Lett., B206, 539, 10.1016/0370-2693(88)91627-9 Passarino, 2010, Higgs pseudo-observables, second Riemann sheet and all that, Nuclear Phys., B834, 77, 10.1016/j.nuclphysb.2010.03.013 Goria, 2012, The Higgs-boson lineshape, Nuclear Phys., B864, 530, 10.1016/j.nuclphysb.2012.07.006 Melnikov, 1996, Final state interaction in the production of heavy unstable particles, Nuclear Phys., B471, 90, 10.1016/0550-3213(96)00151-4 Beenakker, 1997, Non-factorizable corrections to W pair production: Methods and analytic results, Nuclear Phys., B508, 17, 10.1016/S0550-3213(97)80003-X Denner, 1998, Non-factorizable photonic corrections to e+e−→WW→four fermions, Nuclear Phys., B519, 39, 10.1016/S0550-3213(98)00046-7 Fadin, 1994, Interference radiative phenomena in the production of heavy unstable particles, Phys. Rev., D49, 2247 Beenakker, 1999, Radiative corrections to pair production of unstable particles: results for e+e−→4fermions, Nuclear Phys., B548, 3, 10.1016/S0550-3213(99)00110-8 Dittmaier, 2014, Mixed QCD-electroweak O(αsα) corrections to Drell-Yan processes in the resonance region: Pole approximation and non-factorizable corrections, Nuclear Phys., B885, 318, 10.1016/j.nuclphysb.2014.05.027 Dittmaier, 2016, Non-factorizable photonic corrections to resonant production and decay of many unstable particles, Eur. Phys. J., C76, 144, 10.1140/epjc/s10052-016-3968-1 Beenakker, 1997, Non-factorizable corrections to W pair production, Phys. Lett., B411, 203, 10.1016/S0370-2693(97)01010-1 Ballestrero, 2018, W Boson polarization in vector boson scattering at the LHC, J. High Energy Phys., 03, 170, 10.1007/JHEP03(2018)170 Ballestrero, 2019, Polarized vector boson scattering in the fully leptonic WZ and ZZ channels at the LHC, J. High Energy Phys., 09, 087, 10.1007/JHEP09(2019)087 Dittmaier, 2016, Dominant mixed QCD-electroweak O(αsα) corrections to Drell-Yan processes in the resonance region, Nuclear Phys., B904, 216, 10.1016/j.nuclphysb.2016.01.006 de Florian, 2018, QCD⊕QED NNLO corrections to Drell Yan production, Phys. Rev., D98, 094008 Delto, 2020, Mixed QCD⊗QED corrections to on-shell Z boson production at the LHC, J. High Energy Phys., 1, 043, 10.1007/JHEP01(2020)043 Jadach, 1998, Exact O(α) gauge invariant YFS exponentiated Monte Carlo for (un)stable W+W− production at and beyond LEP2 energies, Phys. Lett., B417, 326, 10.1016/S0370-2693(97)01253-7 Jadach, 2000, Final-state radiative effects for the exact O(α) Yennie-Frautschi-Suura exponentiated (un)stable W+W− production at and beyond LEP2 energies, Phys. Rev., D61, 113010 Denner, 2000, O(α) Corrections to e+e−→WW→4 fermions (+γ): first numerical results from RACOONWW, Phys. Lett., B475, 127, 10.1016/S0370-2693(00)00059-9 Denner, 2003, RACOONWW1.3: A Monte Carlo program for four-fermion production at e+e− colliders, Comput. Phys. Comm., 153, 462, 10.1016/S0010-4655(03)00205-4 Kurihara, 2001, e+e−→W+W−→4f(+γ) at LEP2, Phys. Lett., B509, 87, 10.1016/S0370-2693(01)00531-7 Denner, 1998, Further numerical results on non-factorizable corrections to e+e−→4fermions, Phys. Lett., B429, 145, 10.1016/S0370-2693(98)00455-9 Melnikov, 1994, Top near threshold: all αS corrections are trivial, Phys. Lett., B324, 217, 10.1016/0370-2693(94)90410-3 Fadin, 1994, How suppressed are the radiative interference effects in heavy instable particle production?, Phys. Lett., B320, 141, 10.1016/0370-2693(94)90837-0 Dittmaier, 1992, Improved Born approximation for e+e−→W+W− in the LEP200 energy region, Nuclear Phys., B376, 29, 10.1016/0550-3213(92)90066-K Denner, 2001, Off-shell W-pair production: Universal versus nonuniversal corrections Bredenstein, 2004, Four-fermion production at γγ colliders. 1. Lowest-order predictions and anomalous couplings, Eur. Phys. J., C36, 341, 10.1140/epjc/s2004-01948-4 Bredenstein, 2005, Four-fermion production at γγ colliders. 2. Radiative corrections in double-pole approximation, Eur. Phys. J., C44, 27, 10.1140/epjc/s2005-02343-5 Baglio, 2019, Fiducial polarization observables in hadronic WZ production: A next-to-leading order QCD+EW study, J. High Energy Phys., 04, 065, 10.1007/JHEP04(2019)065 Biedermann, 2017, Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC, J. High Energy Phys., 10, 043, 10.1007/JHEP10(2017)043 Biedermann, 2016, Electroweak corrections to pp→μ+μ−e+e−+X at the LHC: A Higgs background study, Phys. Rev. Lett., 116, 161803, 10.1103/PhysRevLett.116.161803 Denner, 2006, The complex-mass scheme for perturbative calculations with unstable particles, Nuclear Phys. Proc. Suppl., 160, 22, 10.1016/j.nuclphysbps.2006.09.025 Kniehl, 2002, Field renormalization constant for unstable particles, Phys. Lett., B530, 129, 10.1016/S0370-2693(02)01331-X Espriu, 2002, Flavor mixing, gauge invariance and wave function renormalization, Phys. Rev., D66, 076002 Bharucha, 2013, Consistent on shell renormalisation of electroweakinos in the complex MSSM: LHC and LC predictions, J. High Energy Phys., 05, 053, 10.1007/JHEP05(2013)053 Beneke, 2004, Effective theory approach to unstable particle production, Phys. Rev. Lett., 93, 011602, 10.1103/PhysRevLett.93.011602 Beneke, 2004, Effective theory calculation of resonant high-energy scattering, Nuclear Phys., B686, 205, 10.1016/j.nuclphysb.2004.03.016 Hoang, 2005, Electroweak absorptive parts in NRQCD matching conditions, Phys. Rev., D71, 074022 Beneke, 1998, Asymptotic expansion of Feynman integrals near threshold, Nuclear Phys., B522, 321, 10.1016/S0550-3213(98)00138-2 Smirnov, 2002, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys., 177, 1 Beneke, 2008, Four-fermion production near the W pair-production threshold, Nuclear Phys., B792, 89, 10.1016/j.nuclphysb.2007.09.030 Actis, 2009, Dominant NNLO corrections to four-fermion production near the W-pair production threshold, Nuclear Phys., B807, 1, 10.1016/j.nuclphysb.2008.08.006 Lee, 1973, Transformation properties of proper vertices in gauge theories, Phys. Lett., 46B, 214, 10.1016/0370-2693(73)90687-4 Kluberg-Stern, 1975, Renormalization of non-abelian gauge theories in a background-field gauge. I. Green’s functions, Phys. Rev., D12, 482