Electrostatic interactions play an essential role in DNA repair and cold-adaptation of Uracil DNA glycosylase

Journal of Molecular Modeling - Tập 14 - Trang 201-213 - 2008
Magne Olufsen1, Arne O. Smalås1, Bjørn O. Brandsdal1
1The Norwegian Structural Biology Centre, Department of Chemistry, University of Tromsø, Tromsø, Norway

Tóm tắt

Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod (cUNG) catalyzes removal of uracil from DNA with an increased kcat and reduced Km relative to its warm-active human (hUNG) counterpart. Specific issues related to DNA repair and substrate binding/recognition (Km) are here investigated by continuum electrostatics calculations, MD simulations and free energy calculations. Continuum electrostatic calculations reveal that cUNG has surface potentials that are more complementary to the DNA potential at and around the catalytic site when compared to hUNG, indicating improved substrate binding. Comparative MD simulations combined with free energy calculations using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method show that large opposing energies are involved when forming the enzyme-substrate complexes. Furthermore, the binding free energies obtained reveal that the Michaelis-Menten complex is more stable for cUNG, primarily due to enhanced electrostatic properties, suggesting that energetic fine-tuning of electrostatics can be utilized for enzymatic temperature adaptation. Energy decomposition pinpoints the residual determinants responsible for this adaptation.

Tài liệu tham khảo

Hochachka PW, Somero GN (1984) Temperature adaptation, in Biochemical adaptations. Princeton University Press, Princeton, NJ, pp 355–449 Fields PA, Somero GN (1998) Proc Natl Acad Sci USA 95:11476–11481 Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) J Biol Chem 278:37015–37023 Leiros I, Moe E, Lanes O, Smalås AO, Willassen NP (2003) Acta Crystallogr D Biol Crystallogr 59:1357–1365 Olufsen M, Smalås AO, Moe E, Brandsdal BO (2005) J Biol Chem 280:18042–18048 Smalås AO, Heimstad ES, Hordvik A, Willassen NP, Male R (1994) Proteins 20:149–166 Brandsdal BO, Heimstad ES, Sylte I, Smalås AO (1999) J Biomol Struct Dyn 17:493–506 Russell RJM, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structure 6:351–361 Kumar S, Nussinov R (2004) ChemBioChem 5:280–290 Gorfe AA, Brandsdal BO, Leiros HKS, Helland R, Smalås AO (2000) Proteins 40:207–217 Brandsdal BO, Smalås AO, Åqvist J (2001) FEBS Lett 499:171–175 Moe E, Leiros I, Riise EK, Olufsen M, Lanes O, Smalås A, Willassen NP (2004) J Mol Biol 343:1221–1230 Lindahl T, Nyberg B (1974) Biochemistry 13:3405–3410 Krokan HE, Standal R, Slupphaug G (1997) Biochem J 325:1–16 Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I, Krokan HE, Tainer JA (1995) Cell 80:869–878 Savva R, Mcauleyhecht K, Brown T, Pearl L (1995) Nature 373:487–493 Ravishankar R, Sagar MB, Roy S, Purnapatre K, Handa P, Varshney U, Vijayan M (1998) Nucleic Acids Res 26:4880–4887 Geoui T, Buisson M, Tarbouriech N, Burmeister WP (2007) J Mol Biol 366:117–131 Bianchet MA, Seiple LA, Jiang YL, Ichikawa Y, Amzel LM, Stivers JT (2003) Biochemistry 42:12455–12460 Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA (1998) EMBO J 17:5214–5226 Parikh SS, Walcher G, Jones GD, Slupphaug G, Krokan HE, Blackburn GM, Tainer JA (2000) Proc Natl Acad Sci USA 97:5083–5088 Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (1996) Nature 384:87–92 Lanes O, Leiros I, Smalås AO, Willassen NP (2002) Extremophiles 6:73–86 Dinner AR, Blackburn GM, Karplus M (2001) Nature 413:752–755 Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91:1–41 Wang JM, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074 Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935 Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690 Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092 Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341 Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897 Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143 Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) J Am Chem Soc 120:9401–9409 Luo R, David L, Gilson MK (2002) J Comput Chem 23:1244–1253 Onufriev A, Bashford D, Case DA (2000) J Phys Chem B 104:3712–3720 Onufriev A, Bashford D, Case DA (2004) Proteins 55:383–394 Peter C, Oostenbrink C, van Dorp A, van Gunsteren WF (2004) J Chem Phys 120:2652–2661 Case DA (1994) Curr Opin Struc Biol 4:285–290 Karplus M, Kushick JN (1981) Macromolecules 14:325–332 Schafer H, Daura X, Mark AE, van Gunsteren WF (2001) Proteins 43:45–56 Schafer H, Mark AE, van Gunsteren WF (2000) J Chem Phys 113:7809–7817 Kuhn B, Kollman PA (2000) J Med Chem 43:3786–3791 Jayaram B, Sprous D, Beveridge DL (1998) J Phys Chem B 102:9571–9576 Connolly ML (1983) J Appl Cryst 16:548–558 Weiser J, Shenkin PS, Still WC (1999) J Comput Chem 20:217–230 Rocchia W, Alexov E, Honig B (2001) J Phys Chem B 105:6507–6514 Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comput Chem 23:128–137 Moreira IS, Fernandes PA, Ramos MJ (2005) J Mol Struc Theochem 729:11–18 Jiang YL, Ichikawa Y, Song F, Stivers JT (2003) Biochemistry 42:1922–1929 Fersht A (1999) Structure and mechanism in protein science. In: Hadler GL (ed) W.H. Freeman and Company, NY Brigo A, Lee KW, Fogolari F, Mustata GL, Briggs JM (2005) Proteins 59:723–741 Kuhn B, Kollman PA (2000) J Am Chem Soc 122:3909–3916 Adekoya OA, Willassen NP, Sylte I (2005) J Biomol Struct Dyn 22:521–531 Luo C, Xu LF, Zheng SX, Luo Z, Jiang XM, Shen JH, Jiang HL, Liu XF, Zhou MD (2005) Proteins 59:742–756 Wang W, Kollman PA (2000) J Mol Biol 303:567–582 Reyes CM, Kollman PA (2000) J Mol Biol 297:1145–1158 Zhang Q, Schlick T (2006) Biophys J 90:1865–1877 Gohlke H, Case DA (2004) J Comput Chem 25:238–250 Cao CY, Jiang YL, Stivers JT, Song FH (2004) Nat Struct Mol Biol 11:1230–1236 Parker CN, Halford SE (1991) Cell 66:781–791 Pearl LH (2000) Mut Res 460:165–181 Krosky DJ, Song FH, Stivers JT (2005) Biochemistry 44:5949–5959 Cao CY, Jiang YL, Krosky DJ, Stivers JT (2006) J Am Chem Soc 128:13034–13035 Jiang YL, Drohat AC, Ichikawa Y, Stivers JT (2002) J Biol Chem 277:15385–15392 Mol CD, Arvai AS, Sanderson RJ, Slupphaug G, Kavli B, Krokan HE, Mosbaugh DW, Tainer JA (1995) Cell 82:701–708 Wong I, Lundquist AJ, Bernards AS, Mosbaugh DW (2002) J Biol Chem 277:19424–19432 Chen CY, Mosbaugh DW, Bennett SE (2005) DNA Repair 4:793–805 Jiang YL, Kwon K, Stivers JT (2001) J Biol Chem 276:42347–42354 Stivers JT, Pankiewicz KW, Watanabe KA (1999) Biochemistry 38:952–963 DeLano WL (2002) The pyMol molecular graphics system. DeLano Scientific, San Carlos, CA, USA