Cấu trúc điện giải poly(caprolactone)-elastin cho sự tái tạo dây thần kinh ngoại biên

Progress in Biomaterials - Tập 3 - Trang 1-8 - 2014
Katelyn E. Swindle-Reilly1, Chinmay S. Paranjape2, Cheryl A. Miller1
1Department of Biomedical Engineering, Saint Louis University, St. Louis, USA
2Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, USA

Tóm tắt

Sự tái tạo dây thần kinh ngoại biên có thể được tăng cường bởi các tín hiệu hóa học và cơ học cho sự phát triển của nhánh thần kinh. Các sợi nano poly(ε-caprolactone) (PCL) được định hướng và không định hướng được chế tạo bằng phương pháp điện phân để kiểm tra khả năng cung cấp hướng tiếp xúc cho các hạch thần kinh tủy sống của gà phôi nhằm tái tạo dây thần kinh ngoại biên. Kính hiển vi điện tử quét được sử dụng để phân tích đường kính sợi. Đường kính sợi được phát hiện là nhỏ hơn đáng kể khi elastin được đưa vào cấu trúc (934 ± 58 nm cho PCL và 519 ± 36 nm cho PCL:elastin). Sau 24 giờ nuôi cấy, có sự bám dính tế bào và sự kéo dài nhánh thần kinh ưu tiên theo chiều dọc các sợi của các cấu trúc có chứa elastin (sự kéo dài nhánh thần kinh trung bình là 173,4 ± 20,7 μm), cho thấy sự hiện diện của elastin thúc đẩy sự phát triển của nhánh thần kinh trên các cấu trúc điện giải.

Từ khóa

#tái tạo dây thần kinh ngoại biên #nhánh thần kinh #poly(caprolactone) #elastin #điện phân

Tài liệu tham khảo

Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:1422–1432 Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vernes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734 Chew SY, Mi R, Hoke A, Leong KW (2008) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29:653–661 Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Martin DC (2007) Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res 83A:636–645 Desai K, Kit K, Li J, Ziranovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006 Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539 Griffin JW, Hoffman PN (1993) Degeneration and regeneration in the peripheral nervous system. Peripher Neuropathy 1:361–376 Jeffries EM, Wang Y (2012) Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng 109:1571–1582 Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG (2011) Two pole air gap electrospinning: fabrication of highly aligned, three dimensional scaffolds for nerve reconstruction. Acta Biomater 7(1):203–215 Kim HW, Yu HS, Lee HH (2008) Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res 87A:25–32 Koh HS, Yong T, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574–3582 Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Leikes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008 Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI (2006a) Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res 79A:963–973 Li QJ, Cooper JA, Mauck RL, Tuan RS (2006b) Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2:377–385 Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238 McClure MJ, Sell SA, Barnes CP, Bowen WC, Bowlin GL (2008) Cross-linking electrospun polydioxanone-soluble elastin blends: material characterization. J Eng Fiber Fabr 3(1):1–10 Neal RA, McClugage SA, Link MC, Sefcik LS, Ogle RC, Botchwey EA (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Pt C-Meth 15(1):11–21 Neal RA, Tholpady SS, Foley PL, Swami N, Ogle RC, Botchwey EA (2012) Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration. J Biomed Mater Res 100A:406–423 Panseri S, Cunha C, Lowery J, DelCarro U, Taraballi F, Amadio S, Vescori A, Glain F (2008) Electrospun micro- and nano-fiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39 Powell HM, Boyce ST (2008) Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res 84A(4):1078–1086 Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110(10):2775–2784 Reed CR, Han L, Andrady A, Caballero M, Jack MC, Collins JB, Saba SC, Loboa EG, Cairns BA, Aalst J (2009) Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plast Surg 62:505–512 Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28:3012–3025 Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2:522–553 Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Van Dyke M, Czerw R, Yoo JJ, Atala A (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088–1094 Um IC, Fang D, Hsiao BS, Okamoto A, Chu B (2004) Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 5:1428–1436 Venugopal J, Low S, Choon AT, Ramakrishna S (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res 84B:34–48 Wang Y, Wang G, Chen L, Hao L, Yin T, Wang B, Lee JCM, Yu Q (2009) Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Biofabrication 1:1–9 Wen X, Tresco PA (2006) Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro. J Biomed Mater Res 76A:626–637 Yang F, Murugah R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610 Yu LM, Leipzig ND, Schoichet MS (2008) Promoting neuron adhesion and growth. Mater Today 11(5):36–43 Zhang YZ, Outang HW, Lim CT, Ramakrishna S, Huang ZM (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res 72B:156–165 Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for tissue engineering. Biomacromolecules 9:1795–1801