Electrospun MXene/carbon nanofibers as supercapacitor electrodes

Journal of Materials Chemistry A - Tập 7 Số 1 - Trang 269-277
Ariana Levitt1,2,3,4, Mohamed Alhabeb1,3,5,4, Christine B. Hatter1,3,5,4, Asia Sarycheva1,3,5,4, Geneviève Dion2,5,4, Yury Gogotsi1,3,5,4
1A.J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA, 19104, USA
2Center for Functional Fabrics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, USA
3Department of Materials Science and Engineering
4Philadelphia
5Drexel University

Tóm tắt

MXene/carbon composite electrodes with high loadings of MXene were prepared via electrospinning. These flexible and free-standing electrodes exhibit high areal capacitance relative to pure carbon nanofibers and MXene-coated fibers and textiles.

Từ khóa


Tài liệu tham khảo

Anasori, 2017, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98

Zhang, 2018, J. Energy Chem., 27, 73, 10.1016/j.jechem.2017.08.004

Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138

Zhang, 2017, Adv. Mater., 29, 1702678, 10.1002/adma.201702678

Hantanasirisakul, 2016, Adv. Electron. Mater., 2, 1600050, 10.1002/aelm.201600050

Peng, 2016, Energy Environ. Sci., 9, 2847, 10.1039/C6EE01717G

Shahzad, 2016, Science, 353, 1137, 10.1126/science.aag2421

Chaudhuri, 2018, ACS Photonics, 5, 1115, 10.1021/acsphotonics.7b01439

Zhou, 2018, Nanoscale, 10, 6005, 10.1039/C8NR00313K

Zhang, 2017, Nanoscale, 9, 18604, 10.1039/C7NR06619H

Seyedin, 2017, J. Mater. Chem. A, 5, 24076, 10.1039/C7TA08355F

Mayerberger, 2017, J. Appl. Polym. Sci., 134, 45295, 10.1002/app.45295

Sobolčiak, 2017, PLoS One, 12, e0183705, 10.1371/journal.pone.0183705

Seyedin, 2015, Sci. Rep., 5, 14946, 10.1038/srep14946

Presser, 2011, Adv. Energy Mater., 1, 423, 10.1002/aenm.201100047

Edie, 1989, Carbon, 27, 647, 10.1016/0008-6223(89)90198-X

Ko, 2003, Adv. Mater., 15, 1161, 10.1002/adma.200304955

Behler, 2009, ACS Nano, 3, 363, 10.1021/nn800445z

Zhou, 2013, J. Power Sources, 222, 410, 10.1016/j.jpowsour.2012.09.004

Lu, 2016, Adv. Energy Mater., 7, 1601301, 10.1002/aenm.201601301

Li, 2004, Adv. Mater., 16, 1151, 10.1002/adma.200400719

Jost, 2015, Adv. Energy Mater., 5, 1401286, 10.1002/aenm.201401286

Zhai, 2011, Adv. Mater., 23, 4828, 10.1002/adma.201100984

Nataraj, 2012, Prog. Polym. Sci., 37, 487, 10.1016/j.progpolymsci.2011.07.001

Yang, 2018, J. Alloys Compd., 749, 441, 10.1016/j.jallcom.2018.03.305

Maleski, 2017, Chem. Mater., 29, 1632, 10.1021/acs.chemmater.6b04830

Zhao, 2015, Adv. Mater., 27, 339, 10.1002/adma.201404140

Ghidiu, 2017, Chem. Mater., 29, 1099, 10.1021/acs.chemmater.6b04234

Zhao, 2015, Synth. Met., 203, 107, 10.1016/j.synthmet.2015.02.018

Hu, 2016, ACS Nano, 10, 11344, 10.1021/acsnano.6b06597

Mariano, 2016, Nanoscale, 8, 16371, 10.1039/C6NR03682A

Mashtalir, 2016, Nanoscale, 8, 9128, 10.1039/C6NR01462C

Alhabeb, 2017, Chem. Mater., 29, 7633, 10.1021/acs.chemmater.7b02847

Lohse, 2007, J. Alloys Compd., 434–435, 405, 10.1016/j.jallcom.2006.08.216

Li, 2015, Mater. Sci. Eng., B, 191, 33, 10.1016/j.mseb.2014.10.009

Wang, 2016, Ceram. Int., 42, 8419, 10.1016/j.ceramint.2016.02.059