Electrospun Core–Shell Fibrous 2D Scaffold with Biocompatible Poly(Glycerol Sebacate) and Poly-l-Lactic Acid for Wound Healing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen G, Yu Y, Wu X, Wang G, Gu G, Wang F, Ren J, Zhang H, Zhao Y. Microfluidic electrospray niacin metal-organic frameworks encapsulated microcapsules for wound healing. Research.2019;2019:1.
Sun X, Zheng R, Cheng L, Zhao X, Jin R, Zhang L, Zhang Y, Zhang Y, Cui W. Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival. RSC Adv.2016;6:9360.
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for cardiac tissue engineering. Int J Cardiol.2013;167:1461.
Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater.2015;14:737.
Chen G, Yu Y, Wu X, Wang G, Ren J, Zhao Y. Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv Funct Mater.2018;28:1801386.
Ifkovits JL, Devlin JJ, Eng G, Martens TP, Vunjak-Novakovic G, Burdick JA. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). ACS Appl Mater Interfaces.2009;1:1878.
Pal P, Srivas PK, Dadhich P, Das B, Maulik D, Dhara S. Nano-/microfibrous cotton-wool-like 3d scaffold with core-shell architecture by emulsion electrospinning for skin tissue regeneration. ACS Biomater Sci Eng.2017;3:3563.
Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater.2015;14:1262.
Sperling LE, Reis KP, Pranke P, Wendorff JH. Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov Today.2016;21:1243.
Thakur N, Sargur Ranganath A, Sopiha K, Baji A. Thermoresponsive cellulose acetate-poly(N-isopropylacrylamide) core-shell fibers for controlled capture and release of moisture. ACS Appl Mater Interfaces.2017;9:29224.
Lv D, Wang R, Tang G, Mou Z, Lei J, Han J, De Smedt S, Xiong R, Huang C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl Mater Interfaces.2019;11:12880.
Sun W, Chen G, Wang F, Qin Y, Wang Z, Nie J, Ma G. Polyelectrolyte-complex multilayer membrane with gradient porous structure based on natural polymers for wound care. Carbohydr Polym.2018;181:183.
Liu Y, Liang X, Zhang R, Lan W, Qin W. Fabrication of electrospun polylactic acid/cinnamaldehyde/beta-cyclodextrin fibers as an antimicrobial wound dressing. Polymers (Basel).2017;9:464.
Wei DX, Dao JW, Chen GQ. A micro-ark for cells: highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater.2018;30:1802273.
Huan S, Liu G, Cheng W, Han G, Bai L. Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties. Biomacromolecules.2018;19:1037.
Rezabeigi E, Wood-Adams PM, Demarquette NR. Complex morphology formation in electrospinning of binary and ternary poly(lactic acid) solutions. Macromolecules.2018;51:4094.
Fernandes JG, Correia DM, Botelho G, Padrão J, Dourado F, Ribeiro C, Lanceros-Méndez S, Sencadas V. PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polym Test.2014;34:64.
Gupta K, Kumar MR. Preparation, characterization and release profiles of pH-sensitive chitosan beads. Polym Int.2000;49:141.
Sun X, Lang Q, Zhang H, Cheng L, Zhang Y, Pan G, Zhao X, Yang H, Zhang Y, Santos HA, Cui W. Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration. Adv Funct Mater.2017;27:1604617.
Valerio O, Pin JM, Misra M, Mohanty AK. Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega.2016;1:1284.
Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol.2002;20:602.
Jeffries EM, Allen RA, Gao J, Pesce M, Wang Y. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater.2015;18:30.
Liu G, Hinch B, Beavis AD. Mechanisms for the transport of α, ω-dicarboxylates through the mitochondrial inner membrane. J Biol Chem.1996;271:25338.
Loh XJ, Abdul Karim A, Owh C. Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. J Mater Chem B.2015;3:7641.
You ZR, Hu MH, Tuan-Mu HY, Hu JJ. Fabrication of poly(glycerol sebacate) fibrous membranes by coaxial electrospinning: Influence of shell and core solutions. J Mech Behav Biomed Mater.2016;63:220.
Chen Y, Sui L, Fang H, Ding C, Li Z, Jiang S, Hou H. Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Compos Sci Technol.2019;174:20.
Yang D, Li L, Chen B, Shi S, Nie J, Ma G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer.2019;163:74.
Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res Part A.2003;67A:531.
Dai Z, Deng J, Yu Q, Helberg RML, Janakiram S, Ansaloni L, Deng L. Fabrication and evaluation of bio-based nanocomposite TFC hollow fiber membranes for enhanced CO2 capture. ACS Appl Mater Interfaces.2019;11:10874.
Liu Y, Zhou G, Liu Z, Guo M, Jiang X, Taskin MB, Zhang Z, Liu J, Tang J, Bai R, Besenbacher F, Chen M, Chen C. Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration. Sci Rep.2017;7:8197.
Miao D, Huang Z, Wang X, Yu J, Ding B. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small.2018;14:e1801527.
Nie G, Lu X, Chi M, Jiang Y, Wang C. CoOx nanoparticles embedded in porous graphite carbon nanofibers derived from electrospun polyacrylonitrile@polypyrrole core–shell nanostructures for high-performance supercapacitors. RSC Adv.2016;6:54693.
Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer.2018;142:244.
Hou L, Zhang X, Mikael PE, Lin L, Dong W, Zheng Y, Simmons TJ, Zhang F, Linhardt RJ. Biodegradable and bioactive PCL-PGS core-shell fibers for tissue engineering. ACS Omega.2017;2:6321.
Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X, Xing X, Xie C, Shi X, Du Y, Deng H, Li Z. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano.2019;13:6372.
Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Biol Mater.2019;2:952.
Yang X, Yang D, Zhu X, Nie J, Ma G. Electrospun and photocrosslinked gelatin/dextran–maleic anhydride composite fibers for tissue engineering. Eur Polym J.2019;113:142.
Yan Y, Sencadas V, Jin T, Huang X, Chen J, Wei D, Jiang Z. Tailoring the wettability and mechanical properties of electrospun poly(l-lactic acid)-poly(glycerol sebacate) core-shell membranes for biomedical applications. J Colloid Interface Sci.2017;508:87.
Michael B, Wolfgang C, Thomas F, et al. Nanostructured fibers via electrospinning. Adv Mater.2001;1(13):70.
Yan Y, Sencadas V, Zhang J, Wei D, Jiang Z. Superomniphilic poly(glycerol sebacate)-poly(l-lactic acid) electrospun membranes for oil spill remediation. Adv Mater Interfaces.2017;4:1700484.
Huang W, Restrepo D, Jung JY, Su FY, Liu Z, Ritchie RO, McKittrick J, Zavattieri P, Kisailus D. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv Mater.2019;1901561:1.
Qin Z, Zhang P, Wu Z, Yin M, Geng Y, Pan K. Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane. Mater Des.2018;147:175.
Lee J, Song B, Subbiah R, Chung JJ, Choi UH, Park K, Kim SH, Oh SJ. Effect of chain flexibility on cell adhesion: semi-flexible model-based analysis of cell adhesion to hydrogels. Sci Rep.2019;9:2463.