Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation

Nanomaterials - Tập 12 Số 23 - Trang 4331
Lijo Francis1, Nidal Hilal1
1NYUAD Water Research Center, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates

Tóm tắt

In this investigation, the electrospraying of CNTs on an electrospun PVDF-Co-HFP membrane was carried out to fabricate robust membranes for the membrane distillation (MD) process. A CNT-modified PVDF-Co-HFP membrane was heat pressed and characterized for water contact angle, liquid entry pressure (LEP), pore size distribution, tensile strength, and surface morphology. A higher water contact angle, higher liquid entry pressure (LEP), and higher tensile strength were observed in the electrosprayed CNT-coated PVDF-Co-HFP membrane than in the pristine membrane. The MD process test was conducted at varying feed temperatures using a 3.5 wt. % simulated seawater feed solution. The CNT-modified membrane showed an enhancement in the temperature polarization coefficient (TPC) and water permeation flux up to 16% and 24.6%, respectively. Field-effect scanning electron microscopy (FESEM) images of the PVDF-Co-HFP and CNT-modified membranes were observed before and after the MD process. Energy dispersive spectroscopy (EDS) confirmed the presence of inorganic salt ions deposited on the membrane surface after the DCMD process. Permeate water quality and rejection of inorganic salt ions were quantitatively analyzed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS). The water permeation flux during the 24-h continuous DCMD operation remained constant with a >99.8% inorganic salt rejection.

Từ khóa


Tài liệu tham khảo

Xue, 2019, Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications, Chem. Rev., 119, 5298, 10.1021/acs.chemrev.8b00593

Huang, 2003, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63, 2223, 10.1016/S0266-3538(03)00178-7

Marsano, 2010, Polyamide 6 nanofibrous nonwovens via electrospinning, J. Appl. Polym. Sci., 117, 1754, 10.1002/app.32118

Hammami, 2017, Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation, ACS Appl. Mater. Interfaces, 9, 1737, 10.1021/acsami.6b11167

Francis, 2022, Electrospun membranes for membrane distillation: The state of play and recent advances, Desalination, 526, 115511, 10.1016/j.desal.2021.115511

Francis, 2020, A comprehensive review of forward osmosis and niche applications, Environ. Sci. Water Res. Technol., 6, 1986, 10.1039/D0EW00181C

Francis, 2011, Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods, Energy, 36, 627, 10.1016/j.energy.2010.09.054

Francis, 2010, Simultaneous electrospin–electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration, Acta Biomater., 6, 4100, 10.1016/j.actbio.2010.05.001

Thoppey, 2012, Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl, Macromolecules, 45, 6527, 10.1021/ma301207t

Haider, 2018, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab. J. Chem., 11, 1165, 10.1016/j.arabjc.2015.11.015

Vatanpour, 2022, Electrospraying technique in fabrication of separation membranes: A review, Desalination, 533, 115765, 10.1016/j.desal.2022.115765

Lijo, 2011, Electrospun polyimide/titanium dioxide composite nanofibrous membrane by electrospinning and electrospraying, J. Nanosci. Nanotechnol., 11, 1154, 10.1166/jnn.2011.3109

Attia, 2018, Robust superhydrophobic electrospun membrane fabricated by combination of electrospinning and electrospraying techniques for air gap membrane distillation, Desalination, 446, 70, 10.1016/j.desal.2018.09.001

Francis, 2010, Synthesis, characterization and mechanical properties of nylon–silver composite nanofibers prepared by electrospinning, Curr. Appl. Phys., 10, 1005, 10.1016/j.cap.2009.12.025

Francis, 2010, Characterization and tensile strength of HPC–PEO composite fibers produced by electrospinning, Mater. Lett., 64, 1806, 10.1016/j.matlet.2010.05.043

Zhang, 2020, Enhanced photocatalytic degradation of organic dyes by ultrasonic-assisted electrospray TiO2/graphene oxide on polyacrylonitrile/β-cyclodextrin nanofibrous membranes, Ultrason. Sonochem., 70, 105343, 10.1016/j.ultsonch.2020.105343

Hilal, 2002, Surface modified microfiltration membranes with molecularly recognising properties, J. Membr. Sci., 213, 97, 10.1016/S0376-7388(02)00516-1

Kochkodan, 2006, Effect of the surface modification of polymer membranes on their microbiological fouling, Colloid J., 68, 267, 10.1134/S1061933X06030021

Tawalbeh, 2018, Membrane separation as a pre-treatment process for oily saline water, Desalination, 447, 182, 10.1016/j.desal.2018.07.029

Hilal, N., Khayet, M., and Wright, C. (2012). Membrane Modification: Technology and Applications, CRC Press. [1st ed.]. 164 B/W Illustrations.

Emadzadeh, 2014, The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process, Desalination, 348, 82, 10.1016/j.desal.2014.06.008

Lee, 2020, Fouling mitigation in forward osmosis and membrane distillation for desalination, Desalination, 480, 114338, 10.1016/j.desal.2020.114338

Khayet, 2011, Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation, Desalination, 273, 36, 10.1016/j.desal.2010.09.038

Giwa, 2017, Biomimetic membranes: A critical review of recent progress, Desalination, 420, 403, 10.1016/j.desal.2017.06.025

Khalil, 2022, 3D printed electrically conductive interdigitated spacer on ultrafiltration membrane for electrolytic cleaning and chlorination, J. Appl. Polym. Sci., 139, 52292, 10.1002/app.52292

Alpatova, 2004, Ultrafiltration of water containing natural organic matter: Heavy metal removing in the hybrid complexation–ultrafiltration process, Sep. Purif. Technol., 40, 155, 10.1016/j.seppur.2004.02.003

Amy, 2017, Membrane-based seawater desalination: Present and future prospects, Desalination, 401, 16, 10.1016/j.desal.2016.10.002

Rojas, 2021, 3D printed manifolds for improved flow management in electrodialysis operation for desalination, Desalination, 505, 114996, 10.1016/j.desal.2021.114996

Hammami, M.A., Francis, L., Croissant, J., Ghaffour, N., Alsaiari, S., and Khashab, N.M. (2022). Periodic Mesoporous Organosilica-Doped Nanocomposite Membranes and Systems Including Same. (EP3471864B1).

Ghaffour, N., Francis, L., Li, Z., Valladares, R., Alsaadi, A.S., Ghdaib, M.A., and Amy, G.L. (2020). Osmotically and Thermally Isolated forward Osmosis-Membrane Distillation (FO-MD) Integrated Module for Water Treatment Applications. (US10688439B2).

Francis, L., Ghaffour, N., and Alsaadi, A. (2016). Submerged Membrane Distillation for Desalination of Water. (US20160310900A1).

Francis, 2013, PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation, J. Mater. Sci., 49, 2045, 10.1007/s10853-013-7894-4

Alsaadi, 2015, Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies, J. Membr. Sci., 489, 73, 10.1016/j.memsci.2015.04.008

Soukane, 2017, Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation, Desalination, 418, 43, 10.1016/j.desal.2017.05.028

Francis, 2013, Fabrication of electrospun nanofibrous membranes for membrane distillation application, Desalination Water Treat., 51, 1337, 10.1080/19443994.2012.700037

Maab, 2013, Polyazole Hollow Fiber Membranes for Direct Contact Membrane Distillation, Ind. Eng. Chem. Res., 52, 10425, 10.1021/ie400043q

Nunes, S.P., Maab, H., and Francis, L. (2022). Polyazole Membrane for Water Purification. (EP2626127A2).

Ahmed, 2020, Hybrid technologies: The future of energy efficient desalination—A review, Desalination, 495, 114659, 10.1016/j.desal.2020.114659

Abdelrasoul, A. (2020). Membrane Distillation: Basics, Advances, and Applications. Advances in Membrane Technologies, IntechOpen.

Lee, 2017, Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study, J. Membr. Sci., 544, 126, 10.1016/j.memsci.2017.09.020

Alsaadi, A.S., Ghaffour, N., Li, J.D., Gray, S., Francis, L., Maab, H., and Amy, G.L. (2013, January 25–28). Modeling of air-gap membrane distillation process. Proceedings of the AMTA/AWWA Membrane Technology Conference and Exposition, San Antonio, TX, USA.

Orfi, J., and Loussif, N. (2010). Modeling of a membrane distillation unit for desalination. Desalination: Methods, Costs and Technology, Nova science Publishers, Inc.

Khayet, 2011, Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci., 164, 56, 10.1016/j.cis.2010.09.005

Eleiwi, 2016, Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process, Desalination, 384, 1, 10.1016/j.desal.2016.01.004

Alsaadi, 2013, Modeling of air-gap membrane distillation process: A theoretical and experimental study, J. Membr. Sci., 445, 53, 10.1016/j.memsci.2013.05.049

Lee, 2015, Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane, J. Membr. Sci., 478, 85, 10.1016/j.memsci.2014.12.053

Zhou, Z., and Ladner, D.A. (SSRN Electron. J., 2022). Computational Modeling of Spacers Printed Directly onto Reverse Osmosis Membranes for Enhanced Module Packing Capacity and Improved Hydrodynamics, SSRN Electron. J., preprint.

Olatunji, 2018, Heat and Mass Transport in Modeling Membrane Distillation Configurations: A Review, Front. Energy Res., 6, 130, 10.3389/fenrg.2018.00130

Shirzadi, 2022, CFD Model Development and Experimental Measurements for Ammonia–Water Separation Using a Vacuum Membrane Distillation Module, Ind. Eng. Chem. Res., 61, 7381, 10.1021/acs.iecr.2c00866

Maab, 2012, Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, J. Membr. Sci., 423–424, 11, 10.1016/j.memsci.2012.07.009

Tijing, 2014, Recent progress of membrane distillation using electrospun nanofibrous membrane, J. Membr. Sci., 453, 435, 10.1016/j.memsci.2013.11.022

Bandini, 2020, Testing the applicability limits of a membrane distillation process with ceramic hydrophobized membranes: The critical wetting temperature, Sep. Purif. Technol., 250, 117205, 10.1016/j.seppur.2020.117205

Seraj, 2022, Graphene-based membranes for membrane distillation applications: A review, J. Environ. Chem. Eng., 10, 107974, 10.1016/j.jece.2022.107974

Chen, 2018, Nanostructure depositions on alumina hollow fiber membranes for enhanced wetting resistance during membrane distillation, J. Membr. Sci., 564, 227, 10.1016/j.memsci.2018.07.011

Feng, 2022, Construction of omniphobic PVDF membranes for membrane distillation: Investigating the role of dimension, morphology, and coating technology of silica nanoparticles, Desalination, 525, 115498, 10.1016/j.desal.2021.115498

Francis, 2014, Fabrication and Characterization of Functionally Graded Poly(vinylidine fluoride)-Silver Nanocomposite Hollow Fibers for Sustainable Water Recovery, Sci. Adv. Mater., 6, 2659, 10.1166/sam.2014.1980

Shahabadi, 2017, Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride- co -hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation, J. Membr. Sci., 537, 140, 10.1016/j.memsci.2017.05.039

Jia, 2021, Hierarchical Janus membrane via a sequential electrospray coating method with wetting and fouling resistance for membrane distillation, Desalination, 520, 115313, 10.1016/j.desal.2021.115313

Su, 2019, Robust Superhydrophobic Membrane for Membrane Distillation with Excellent Scaling Resistance, Environ. Sci. Technol., 53, 11801, 10.1021/acs.est.9b04362

Hong, 2021, A pore-size tunable superhydrophobic membrane for high-flux membrane distillation, J. Membr. Sci., 641, 119862, 10.1016/j.memsci.2021.119862

Gethard, 2010, Water Desalination Using Carbon-Nanotube-Enhanced Membrane Distillation, ACS Appl. Mater. Interfaces, 3, 110, 10.1021/am100981s

Song, 2021, Carbon nanotube enhanced membrane distillation for salty and dyeing wastewater treatment by electrospinning technology, Environ. Res., 204, 111892, 10.1016/j.envres.2021.111892

Ali, 2018, Estimation of liquid entry pressure in hydrophobic membranes using CFD tools, J. Membr. Sci., 552, 68, 10.1016/j.memsci.2018.01.061

Tomaszewska, M. (2014). Temperature Polarization. Encyclopedia of Membranes, Springer.

Francis, 2013, Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions, J. Membr. Sci., 455, 103, 10.1016/j.memsci.2013.12.033

Alsaadi, 2014, Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation, J. Membr. Sci., 471, 138, 10.1016/j.memsci.2014.08.005

Francis, 2013, Material gap membrane distillation: A new design for water vapor flux enhancement, J. Membr. Sci., 448, 240, 10.1016/j.memsci.2013.08.013

Kim, 2019, Osmotically and Thermally Isolated Forward Osmosis–Membrane Distillation (FO–MD) Integrated Module, Environ. Sci. Technol., 53, 3488, 10.1021/acs.est.8b05587

Alsaadi, 2018, Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux, J. Membr. Sci., 563, 175, 10.1016/j.memsci.2018.05.060

Kim, 2018, Effect of non-woven net spacer on a direct contact membrane distillation performance: Experimental and theoretical studies, J. Membr. Sci., 564, 193, 10.1016/j.memsci.2018.07.019

Francis, 2014, Submerged membrane distillation for seawater desalination, Desalination Water Treat., 55, 2741, 10.1080/19443994.2014.946716

Kim, 2019, Innovative swirling flow-type microbubble generator for multi-stage DCMD desalination system: Focus on the two-phase flow pattern, bubble size distribution, and its effect on MD performance, J. Membr. Sci., 588, 117197, 10.1016/j.memsci.2019.117197

Korolkov, 2018, Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization, Mater. Chem. Phys., 205, 55, 10.1016/j.matchemphys.2017.11.006

Kuang, 2019, Analysis of temperature and concentration polarizations for performance improvement in direct contact membrane distillation, Int. J. Heat Mass Transf., 145, 118724, 10.1016/j.ijheatmasstransfer.2019.118724

Servi, 2016, A systematic study of the impact of hydrophobicity on the wetting of MD membranes, J. Membr. Sci., 520, 850, 10.1016/j.memsci.2016.08.021

Alanezi, A.A., Bassyouni, M., Abdel-Hamid, S.M.S., Ahmed, H.S., Abdel-Aziz, M.H., Zoromba, M.S., and Elhenawy, Y. (2021). Theoretical Investigation of Vapor Transport Mechanism Using Tubular Membrane Distillation Module. Membranes, 11.

Tomaszewska, M. (2016). Temperature Polarization Coefficient (TPC). Encyclopedia of Membranes, Springer.