Electrophysiological responses from intrinsically photosensitive retinal ganglion cells are diminished in glaucoma patients
Tài liệu tham khảo
Berson, 2002, Phototransduction by retinal ganglion cells that set the circadian clock, Science, 295, 1070, 10.1126/science.1067262
Dacey, 2005, Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN, Nature, 433, 749, 10.1038/nature03387
Hannibal, 2004, Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract, Invest Ophthalmol Vis Sci, 45, 4202, 10.1167/iovs.04-0313
Güler, 2008, Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision, Nature, 453, 102, 10.1038/nature06829
Hattar, 2002, Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity, Science, 295, 1065, 10.1126/science.1069609
Hattar, 2003, Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice, Nature, 424, 75, 10.1038/nature01761
Provencio, 2000, A novel human opsin in the inner retina, J Neurosci, 20, 600, 10.1523/JNEUROSCI.20-02-00600.2000
Gamlin, 2007, Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells, Vis Res, 47, 946, 10.1016/j.visres.2006.12.015
Provencio, 1998, Melanopsin: an opsin in melanophores, brain, and eye, Proc Natl Acad Sci U S A, 95, 340, 10.1073/pnas.95.1.340
Panda, 2002, Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting, Science, 298, 2213, 10.1126/science.1076848
Hatori, 2010, The emerging roles of melanopsin in behavioral adaptation to light, Trends Mol Med, 16, 435, 10.1016/j.molmed.2010.07.005
Lucas, 2003, Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice, Science, 299, 245, 10.1126/science.1077293
Quigley, 1980, The mechanism of optic nerve damage in experimental acute intraocular pressure elevation, Invest Ophthalmol Vis Sci, 19, 505
Harwerth, 2006, Visual field defects and retinal ganglion cell losses in patients with glaucoma, Arch Ophthalmol, 124, 853, 10.1001/archopht.124.6.853
Quigley, 1988, Chronic human glaucoma causing selectively greater loss of large optic nerve fibers, Ophthalmology, 95, 357, 10.1016/S0161-6420(88)33176-3
Gracitelli, 2014, A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma, Invest Ophthalmol Vis Sci, 18, 7997, 10.1167/iovs.14-15146
Feigl, 2011, Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma, Invest Ophthalmol Vis Sci, 21, 4362, 10.1167/iovs.10-7069
Kankipati, 2011, The post-illumination pupil response is reduced in glaucoma patients, Invest Ophthalmol Vis Sci, 52, 2287, 10.1167/iovs.10-6023
Gracitelli, 2015, Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma, Invest Ophthalmol Vis Sci, 122, 1139
Drouyer, 2008, Glaucoma alters the circadian timing system, PLoS ONE, 3, e3931, 10.1371/journal.pone.0003931
Fukuda, 2012, Distinct responses of cones and melanopsin-expressing retinal ganglion cells in human electroretinogram, J Physiol Anthropol, 31, 20, 10.1186/1880-6805-31-20
Fukuda, 2010, The ERG responses to light stimuli of melanopsin-expressing retinal ganglion cells that are independent of rods and cones, Neurosci Lett, 479, 282, 10.1016/j.neulet.2010.05.080
Estevez, 1982, The ‘silent substitution’ method in visual research, Vis Res, 22, 681, 10.1016/0042-6989(82)90104-3
Uji, 1987, Spectral characteristics of electroretinography in congenital red–green color blindness, Jpn J Ophthalmol, 31, 61
Usui, 1998, Flicker cone ERG in dichromats and trichromats, Vis Res, 38, 3391, 10.1016/S0042-6989(97)00466-5
Usui, 1998, Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength, Vis Res, 38, 3247, 10.1016/S0042-6989(98)00046-7
Whitmore, 1995, Differences in the temporal properties of human longwave- and middlewave-sensitive cones, Eur J Neurosci, 6, 1420, 10.1111/j.1460-9568.1995.tb01135.x
Tsujimura, 2001, A linear chromatic mechanism drives the pupillary response, Proc R Soc Med, 7, 2203, 10.1098/rspb.2001.1775
Lucas, 2014, Measuring and using light in the melanopsin age, Trends Neurosci, 37, 1, 10.1016/j.tins.2013.10.004
Dacey, 1992, Dendritic field size and morphology of midget and parasol ganglion cells of the human retina, Proc Natl Acad Sci U S A, 89, 9666, 10.1073/pnas.89.20.9666
Seiple, 1994, ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave’, Vis Neurosci, 11, 667, 10.1017/S0952523800002972
Bailes, 2010, Melanopsin and inner retinal photoreception, Cell Mol Life Sci, 67, 99, 10.1007/s00018-009-0155-7
Do, 2010, Intrinsically photosensitive retinal ganglion cells, Physiol Rev, 90, 1547, 10.1152/physrev.00013.2010
Barnard, 2006, Melanopsin regulates visual processing in the mouse retina, Curr Biol, 16, 389, 10.1016/j.cub.2005.12.045
Dkhissi-Benyahya, 2013, The absence of melanopsin alters retinal clock function and dopamine regulation by light, Cell Mol Life Sci, 70, 3435, 10.1007/s00018-013-1338-9
Rao, 2013, A direct and melanopsin-dependent fetal light response regulates mouse eye development, Nature, 494, 243, 10.1038/nature11823
Renna, 2011, Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents, Nat Neurosci, 14, 827, 10.1038/nn.2845
Panda, 2003, Melanopsin is required for non-image-forming photic responses in blind mice, Science, 301, 525, 10.1126/science.1086179
Kawasaki, 2010, Selective wavelength pupillometry in Leber hereditary optic neuropathy, Clin Exp Ophthalmol, 38, 322, 10.1111/j.1442-9071.2010.02212.x
Provencio, 2002, Photoreceptive net in the mammalian retina, Nature, 415, 93, 10.1038/415493a
Kardon, 2011, Chromatic pupillometry in patients with retinitis pigmentosa, Ophthalmology, 118, 376, 10.1016/j.ophtha.2010.06.033
Li, 2006, Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model, Invest Ophthalmol Vis Sci, 47, 2951, 10.1167/iovs.05-1295