Electrophysiological responses and field attraction of the grey corn weevil, Tanymecus (Episomecus) dilaticollis Gyllenhal (Coleoptera: Curculionidae) to synthetic plant volatiles
Tóm tắt
The grey corn weevil, Tanymecus (Episomecus) dilaticollis, is an economically important polyphagous pest in Eastern and Central Europe. The present research is the first published electrophysiological study of olfactory sensitivity of adult T. dilaticollis to plant volatiles. The electrophysiological responses of male and female antennae were recorded to 20 synthetic volatile organic compounds (VOCs), previously identified to be released from the preferred host plants, maize and sunflower. Antennae of both sexes responded to a wide range of volatiles from different chemical classes: fatty acid derivatives, aromatic compounds and terpenoids. Two green leaf volatiles, (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol, and one terpenoid, (±)-linalool, elicited the strongest electrophysiological responses by male and female antennae. Relatively high electrophysiological activity by T. dilaticollis antennae was also recorded to benzaldehyde, eugenol and caryophyllene. In the field, (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol, when presented individually, caught significantly more male and female T. dilaticollis than unbaited controls. These compounds could be developed into an attractive trap for the detection and monitoring of T. dilaticollis.
Tài liệu tham khảo
Almaši R, Bača F, Čamprag D, Seculić R (2002) Štetočine kukuruza I njihovo suzbijanje. Institut za kukuruz”Zemun polje”, Novi Sad
Altuzar A, Malo EA, Gonzalez-Hernandez H, Rojas JC (2007) Electrophysiological and behavioural responses of Scyphophorus acupunctatus (Col., Curculionidae) to Agave tequilana volatiles. J Appl Entomol 131:121–127. doi:10.1111/j.1439-0418.2006.01135.x
Angelov P (1978) Fauna of Bulgaria 7. Coleoptera Curculionidae. Part II. Brachyderinae, Brachycerinae, Tanymecinae, Cleoninae, Curculioninae, Myorrhininae. Bulgarian Academy of Science, Sofia (in Bulgarian)
Bãrbulescu A, Voinescu I, Sadagorschi D, Penescu A, Popov C, Vasilescu S (2001) CRUISER 350 FS—a new product for maize and sunflower seed treatment against Tanymecus dilaticollis Gyll. Rom Agric Res 15:77–87
Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85:257–262. doi:10.1023/A:1003140219888
Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman and Hall, New York
Birch MC, Haynes KF (1982) Insect pheromones. The Institute of Biology’s Studies in Biology no. 147. E. Arnold, Ltd., London
Birkett MA, Chamberlain K, Khan ZR, Pickett JA, Toshova T, Wadhams LJ, Woodcock CM (2006) Electrophysiological responses of the lepidopterous stemborers Chilo partellus and Busseola fusca to volatiles from wild and cultivated host plants. J Chem Ecol 32:2475–2487. doi:10.1007/s10886-006-9165-1
Bjostad LB (1998) Electrophysiological methods. In: Millar JG, Haynes KF (eds) Methods in chemical ecology. Kluwer Academic Publishers, Norwell, pp 339–375
Borg-Karlson A-K, Tengö J, Valterová I, Rikard Unelius C, Taghizadeh T, Tolasch T, Francke W (2003) (S)-(+)-Linalool, a mate attractant pheromone component in the bee Colletes cunicularius. J Chem Ecol 29:1–14. doi:10.1023/A:1021964210877
Buttery RG, Ling LC (1984) Corn leaf volatiles: identification using Tenax trapping for possible insect attractants. J Agric Food Chem 32:1104–1106. doi:10.1021/jf00125a044
Cămpag DS, Seculić RR, Kereši TB (2006) Forecasting of major sugar beet pest occurrence in Serbia during the period 1961–2004. Proc Natl Sci Matica Srpska Novi Sad 110:187–194
Čamprag D (1969) Kukuruzna pipa, nacsin zsivota i suzbijanje. Zadruzsna knjiga, Beograd
Čamprag D (1994) Integralna zaštita kukuruza od štetočina. FEJITON, Novi Sad
Cossé AA, Bartelt RJ, Zilkowski BW, Bea DW, Andress ER (2006) Behaviorally active green leaf volatiles for monitoring the leaf beetle, Diorhabda elongata, a biocontrol agent of saltcedar, Tamarix spp. J Chem Ecol 32:2695–2708. doi:10.1007/s10886-006-9193-x
de Groot P, MacDonald LM (1999) Green leaf volatiles inhibit response of red pine cone beetle Conophthorus resinosae (Coleoptera: Scolytidae) to a sex pheromone. Naturwissenschaften 86:81–85. doi:10.1007/s001140050576
de Groot P, Grant GG, Poland TM, Scharbach R, Buchan L, Nott RW, Macdonald L, Pitt D (2008) Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage. J Chem Ecol 34:1170–1179. doi:10.1007/s10886-008-9514-3
Dickens JC (1989) Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol Exp Appl 52:191–203. doi:10.1007/BF00414044
Dickens JC (1990) Specialized receptor neurons for pheromone and host plant odors in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae). Chem Senses 15:311–331. doi:10.1093/chemse/15.3.311
Dickens JC (2000) Sexual maturation and temporal variation of neural responses in adult Colorado potato beetle volatiles emitted by potato plants. J Chem Ecol 26:1265–1279. doi:10.1023/A:1005492229377
Gerginov L (1989) Insect pests of maize in Bulgaria and their control. Acta Phytopatol Entomol Hung 24:81–84
Gouinguené S, Alborn H, Turlings TCJ (2003) Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J Chem Ecol 29:145–162. doi:10.1023/A:1021984715420
Hansson BS, Larsson MC, Leal WS (1999) Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol Entomol 24:121–126. doi:10.1046/j.1365-3032.1999.00121.x
Kacsó A (1974) Damage caused by Tanymecus dilaticollis Gyll. to leaf and crop. Acta Agr Acad Sci Hung 23:285–303
Kalinová B, Stránský K, Harmatha J, Čtvrtečka R, Ždárek J (2000) Can chemical cues from blossom buds influence cultivar preference in the apple blossom weevil (Anthonomus pomorum)? Entomol Exp Appl 95:47–52. doi:10.1023/A:1003938120861
Keszthelyi S, Kurucsai P, Szabó T, Pál-Fám F (2008) Food choice studies and control trials carried out with maize leaf and beet leaf weevil. Növvéd 44:391–396 (In Hungarian, English summary)
Khan ZR, Pickett JA, van den Berg J, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and Striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962. doi:10.1002/1526-4998(200011)56:11<957:AID-PS236>3.0.CO;2-T
Kirkov K (1967) Tanymecus dilaticollis—its biology and control. Plant Sci 4:45–50 (in Bulgarian, English summary)
Kozlowski MW, Visser JH (1981) Host-plant-related properties of the antennal olfactory system in the oak flea weevil, Rhynchaenus quercus. Electroantennogram study. Entomol Exp Appl 30:169–175. doi:10.1007/BF00300883
Krusteva H, Panajotova M, Tonev T, Karadzhova Y, Milanova S, Nikolov P, Dimitrova A, Stefcheva M, Vencislavov V, Chavdarov L, Velichkov A (2006) Good plant protection practice. Maize. Guidelines for good plant protection practice, 2, 015, 1:69–77 (in Bulgarian)
Ladd TL (1980) Japanese beetle: enhancement of lures by eugenol and caproic acid. J Econ Entomol 73:718–720
Landon F, Ferary S, Pierre D, Auger J, Biemont JC, Levieux J, Pouzat J (1997) Sitona lineatus host-plant odors and their components: effect on locomotor behavior and peripheral sensitivity variations. J Chem Ecol 23:2161–2173. doi:10.1023/B:JOEC.0000006436.21448.b7
Larsson MC, Leal WS, Hansson BS (2001) Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J Insect Physiol 47:1065–1076. doi:10.1016/S0022-1910(01)00087-7
Minyard JP, Hardee DD, Gueldner RC, Thompson AC, Wiygul G, Hedin PA (1969) Constituents of the cotton bud. Compounds attractive to the boll weevil. J Agric Food Chem 17:1093–1097. doi:10.1021/jf60165a003
Ngi-Song AJ, Njagi PGN, Torto B, Overholt WA (2000) Identification of behaviourally active components of maize volatiles for the stemborer parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae). Insect Sci Appl 20:181–189
Otálora-Luna F, Hammock JA, Alessandro RT, Lapointe SL, Dickens JC (2009) Discovery and characterization of chemical signals for citrus root weevil, Diaprepes abbreviatus. Arthropod-Plant Interact 3:63–73. doi:10.1007/s11829-009-9058-7
Paulian F (1973) Sexual dimorphism in the maize leaf weevil (Tanymecus dilaticollis Gyll.–Curculionidae). Probl Prot Plantelor 1:86–94 (in Romanian)
Piñero JC, Prokopy RJ (2003) Field evaluation of plant odor and pheromonal combinations for attracting plum curculios. J Chem Ecol 29:2735–2748. doi:10.1023/B:JOEC.0000008017.16911.aa
Poland TM, Borden JH, Stock AJ, Chong LJ (1998) Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonus rufipennis, and the western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae) to attractant-baited traps. J Entomol Soc Brit Columbia 95:17–24
Poland TM, de Groot P, Burke S, Wakarchuk D, Haack RA, Nott R (2004) Semiochemical disruption of the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae). Environ Entomol 33:221–226
Popov P (1969) Studies on Tanymecus dilaticollis Gyll. (Curculionidae, Coleoptera) in Bulgaria. Rastenievad Nauk 6:111–123 (in Bulgarian, English summary)
Prokopy RJ, Phelan PL, Wright SE, Minalga AJ, Barger R, Leskey TC (2001) Compounds from host fruit odor attractive to adult plum curculios (Coleoptera: Curculionidae). J Entomol Sci 36:122–134
Reinecke A, Ruther J, Tolasch T, Francke W, Hilker M (2002) Alcoholism in cockchafers: orientation of male Melolontha melolontha towards green leaf alcohols. Naturwissenschaften 89:265–269. doi:10.1007/s00114-002-0314-2
Reisenmann CE, Christensen TA, Francke W, Hildebrand JG (2004) Enantioselectivity of projection neurons innervating identified olfactory glomeruli. J Neurosci 24:2602–2611. doi::10.1523/JNEUROSCI.5192-03.2004
Roelofs WL (1984) Electroantennogram assays: rapid and convenient screening procedures for pheromones. In: Hummel HE (ed) Techniques in pheromone research. Springer, New York, pp 131–159
Ruther J, Tolasch T (2004) Attraction of garden chafer, Phyllopertha horticola, to floral Japanese beetle lure. J Appl Entomol 128:158–160. doi:10.1111/j.1439-0418.2004.00832.x
Ruther J, Reinecke A, Thiemann K, Tolasch T, Francke W, Hilker M (2000) Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol Entomol 25:172–179. doi:10.1046/j.1365-3032.2000.00183.x
Sáringer G, Takács A (1994) Biology and control of Tanymecus dilaticollis Gyll. (Col., Curculionidae). Acta Phytopatol Entomol Hung 29:173–185
Schiestl FP, Marion-Poll F (2001) Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. In: Jackson JF, Linskens HF, Inman RB (eds) Molecular methods of plant analysis 21: analysis of taste and aroma. Springer, Berlin, pp 173–198
Schuh G, Heiden AC, Hoffman T, Kahl J, Rockel P, Rudolph J, Wildt J (1997) Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J Atmos Chem 27:291–318. doi:10.1023/A:1005850710257
Sekulić R, Kereši T (2006) Štetočine suncokreta takom proleća i mogućnosti njihovog suzbijaja. Biljn lek XXXIV:360–373
Smart LE, Blight MM (1997) Field discrimination of oilseed rape, Brassica napus volatiles by cabbage seed weevil, Ceutorhynchus assimilis. J Chem Ecol 23:2555–2567. doi:10.1023/B:JOEC.0000006666.77111.ab
Szendrei Z, Rodriguez-Saona C (2010) A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol Exp Appl 134:201–210. doi:10.1111/j.1570-7458.2009.00954.x
Szendrei Z, Malo E, Stelinski L, Rodriguez-Saona C (2009) Response of cranberry weevil (Coleoptera: Curculionidae) to host plant volatiles. Environ Entomol 38:861–869. doi:10.1603/022.038.0340
van Tol RWHM, Visser JH (2002) Olfactory antennal responses of the vine weevil Otiorhynchus sulcatus to plant volatiles. Entomol Exp Appl 102:49–64. doi:10.1023/A:1015243018643
Visser JH (1986) Host odor perception in phytophagous insects. Annu Rev Entomol 31:121–144. doi:10.1146/annurev.en.31.010186.001005
Visser JH, Avé DA (1978) General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomol Exp Appl 24:738–749. doi:10.1007/BF02385130
Voinescu I, Bãrbulescu A (1998) Evolution of maize leaf weeevil (Tanymecus dilaticollis Gyll.) in various crops depending on the preceing crop. Proceedings of International Symposium on Integrated Protection of Field Crops. Vrnja-Ka Banja 157–163
Wee S-L, El-Sayed AM, Gibb AR, Mitchell V, Suckling DM (2008) Behavioural and electrophysiological responses of Pantomorus cervinus (Boheman) (Coleoptera: Curculionidae) to host plant volatiles. Aust J Entomol 47:24–31. doi:10.1111/j.1440-6055.2007.00624.x
Wilson IM, Borden JH, Gries R, Gries G (1996) Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). J Chem Ecol 22:1861–1875. doi:10.1007/BF02028509
Zhang Q-H, Schlyter F, Anderson P (1999) Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus. J Chem Ecol 25:2847–2861. doi:10.1023/A:1020816011131
Zhu J, Cossé AA, Obrycki JJ, Boo KS, Baker TC (1999) Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. J Chem Ecol 25:1163–1177. doi:10.1023/A:1020846212465