Electrophysical Characteristics of Polyvinyl Alcohol/Mn–Zn Ferrite–Spinel Magnetic Polymer Composites

Allerton Press - Tập 86 - Trang 618-622 - 2022
V. G. Kostishyn1, R. I. Shakirzyanov1, I. M. Isaev1, V. K. Olitsky1, A. R. Kayumova1, D. V. Salogub1
1National University of Science and Technology “MISiS”, Moscow, Russia

Tóm tắt

Electrophysical properties of polyvinyl alcohol/Mn–Zn ferrite composites are studied in the 0.05–7 GHz range of frequencies. It is found that the concentration of ferrite determines the values of dielectric permittivity and magnetic permeability. It is shown that composites with ferrite fractions of 0.2 and 0.4 can be used as radar absorbing materials, while those with fractions of 0.6 and 0.8 can be used as radio shielding materials.

Tài liệu tham khảo

Spodobaev, Yu.M. and Kubanov, V.P., Osnovy elektromagnitnoi ekologii (Fundamentals of Electromagnetic Ecology), Moscow: Radio Svyaz’, 2000. Hamzany, Y., Feinmesser, R., Shpitzer, T., et al., Antioxid. Redox Signaling, 2013, vol. 18, p. 622. Hao, Y.H., Zhao, L., and Peng, R.Y., Biomed. Environ. Sci., 2018, vol. 31, no. 1, p. 57. Kumar, D., Moharana, A., and Kumar, A., Mater. Today Chem., 2020, vol. 17, 100346. Mikhailin, Yu.A., Spetsial’nye polimernye kompozitsionnye materialy (Special Polymer Composite Materials), St. Petersburg: Nauchn. Osnovy Tekhnol., 2009. Yakushko, E.V., Kozhitov, L.V., Muratov, D.G., et al., Russ. Phys. J., 2021, vol. 63, no. 12, p. 2226. Shakirzyanov, R.I., Kostishyn, V.G., Morchenko, A.T., et al., Russ. J. Inorg. Chem., 2020, vol. 65, no. 6, p. 829. Kochervinskii, V.V., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 2, p. 144. Vyzulin, S.A., Buz’ko, V.Y., Kalikintseva, D.A., et al., Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, no. 9, p. 1019. Aslam, M., Kalyar, M.A., and Raza, Z.A., Polym. Eng. Sci., 2018, vol. 58, p. 2119. Zhang, Q., Liu, C., Wu, Z., et al., J. Magn. Magn. Mater., 2019, vol. 479, p. 337. Lahsmin, Y.K., Heryanto, H., Ilyas, S., et al., Opt. Mater., 2021, vol. 111, 110639. Abdullah, B., Ilyas, S., and Tahir, D., J. Nanomater., 2018, vol. 2018, 9823263. Kumar, S., Datt, G., Kumar, A.S., and Abhyankar, A.C., J. Appl. Phys., 2016, vol. 120, 164901. Kostishin, V.G., Vergazov, R.M., Men’shova, S.B., et al., Zavod. Lab., Diagn. Mater., 2021, vol. 87, no. 1, p. 30. Kostishin, V.G., Vergazov, R.M., Men’shova, S.B., and Isaev, I.M., Ross. Tekhnol. Zh., 2020, vol. 8, no. 6(38), p. 87. Isaev, I.M., Kostishin, V.G., Korovushkin, V.V., et al., Tech. Phys., 2021, vol. 66, no. 9, p. 1216. Kostishin, V.G., Vergazov, R.M., Andreev, V.G., et al., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2010, vol. 4, p. 18. Vyzulin, S.A., Buz’ko, V.Y., Kalikintseva, D.A., and Miroshnichenko, E.L., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 105. Handoko, E., Mangasi, A.M., Iwan, S., et al., MATEC Web. Conf., 2018, vol. 197, 02007. Ravinder, D. and Latha, K., J. Appl. Phys., 1994, vol. 75, p. 6118. Mathur, P., Thakur, A., and Singh, M., Int. J. Mod. Phys. B, 2009, vol. 23, no. 11, p. 2523. Rahman, M.T., Vargas, M., and Ramana, C.V., J. Alloys Compd., 2014, vol. 617, p. 547. Bobrovskii, S.Y., Garanov, V.A., Naboko, A.S., et al., EPJ Web Conf., 2018, vol. 185. Babayan, V., Kazantseva, N.E., Moučka, R., et al., J. Magn. Magn. Mater., 2012, vol. 324, no. 2, p. 161. Moučka, R., Lopatin, A.V., Kazantseva, N.E., et al., J. Mater. Sci., 2008, vol. 42, p. 9480. Wu, Y., Han, M., Tang, Z., and Deng, L., J. Appl. Phys., 2014, vol. 115, 163902. Tsutaoka, T., Kasagi, T., and Hatakeyama, K., J. Appl. Phys., 2011, vol. 110, 053909. Lagarkov, A.N. and Rozanov, K.N., J. Magn. Magn. Mater., 2009, vol. 321, no. 14, p. 2082. Saini, M., Shukla, R., and Kumar, A., J. Magn. Magn. Mater., 2019, vol. 491, 165549.