Electrophoretic deposition: Novel in situ film growth mechanism of carbon nanocomposite films within non-conductive fabrics for multi-scale hybrid composites
Tài liệu tham khảo
Kamae, 2012, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase – Part I: the development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos. Appl. Sci. Manuf., 43, 1569, 10.1016/j.compositesa.2012.02.016
Yue, 2014, Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating, Compos. Sci. Technol., 99, 131, 10.1016/j.compscitech.2014.05.021
An, 2018, Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: fiber and interphase characterization, Compos. Sci. Technol., 166, 131, 10.1016/j.compscitech.2018.01.003
Godara, 2009, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, 47, 2914, 10.1016/j.carbon.2009.06.039
Coleman, 2006, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44, 1652, 10.1016/j.carbon.2006.02.038
Thostenson, 2006, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites, Carbon, 44, 3022, 10.1016/j.carbon.2006.05.014
Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X
Doshi, 2015, Self-sensing carbon nanotube composites: processing and characterization, 752
Gao, 2010, Glass fibers with carbon nanotube networks as multifunctional sensors, Adv. Funct. Mater., 20, 1885, 10.1002/adfm.201000283
Doshi, 2018, Carbon nanotube coated fabric-based thin and flexible pressure sensors with ultra-wide sensing range, ACS Sens., 3, 1276, 10.1021/acssensors.8b00378
Hu, 2010, Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell, Nano Lett., 10, 838, 10.1021/nl903267n
Sung, 2016, Characterization of thermoelectric properties of multifunctional multiscale composites and fiber-reinforced composites for thermal energy harvesting, Compos. B Eng., 92, 202, 10.1016/j.compositesb.2016.02.050
Robel, 2005, Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions, Adv. Mater., 17, 2458, 10.1002/adma.200500418
Ahmed, 2018, Integration of carbon nanotube sensing skins and carbon fiber composites for monitoring and structural repair of fatigue cracked metal structures, Compos. Struct., 203, 182, 10.1016/j.compstruct.2018.07.005
Ahmed, 2016, Development of a novel integrated strengthening and sensing methodology for steel structures using cnt-based composites, J. Struct. Eng., 4016202
Qian, 2010, Carbon nanotube-based hierarchical composites: a review, J. Mater. Chem., 20, 4751, 10.1039/c000041h
Zhang, 2009, Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties, Compos. Sci. Technol., 69, 594, 10.1016/j.compscitech.2008.12.002
Qian, 2010, Carbon nanotube grafted silica fibres: characterising the interface at the single fibre level, Compos. Sci. Technol., 70, 393, 10.1016/j.compscitech.2009.11.014
An, 2013, Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers, ACS Appl. Mater. Interfaces, 5, 2022, 10.1021/am3028734
Streitberger, 2008
Hanaor, 2011, The effects of firing conditions on the properties of electrophoretically deposited titanium dioxide films on graphite substrates, J. Eur. Ceram. Soc., 31, 2877, 10.1016/j.jeurceramsoc.2011.07.007
Ishihara, 1996, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells, J. Am. Ceram. Soc., 79, 913, 10.1111/j.1151-2916.1996.tb08525.x
Moon, 2001, High-yield purification process of singlewalled carbon nanotubes, J. Phys. Chem. B, 105, 5677, 10.1021/jp0102365
Gao, 2001, Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater., 13, 1770, 10.1002/1521-4095(200112)13:23<1770::AID-ADMA1770>3.0.CO;2-G
Du, 2002, Preparation of carbon nanotubes composite sheet using electrophoretic deposition process, J. Mater. Sci. Lett., 21, 565, 10.1023/A:1015417206987
Azam, 2019, Direct deposition of multi-walled carbon nanotubes onto stainless steel and YEF foils using a simple electrophoretic deposition for electrochemical capacitor electrode, Mater. Res. Express, 6, 15501, 10.1088/2053-1591/aae293
Sharma, 2018, Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection, Sensor. Actuator. B Chem., 266, 329, 10.1016/j.snb.2018.03.118
Bahru, 2019, Structural analyses and deposition of purified carbon nanotubes using electrophoretic deposition, Mater. Res. Express, 6, 10.1088/2053-1591/ab2f09
Du, 2002, Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition, Mater. Lett., 57, 434, 10.1016/S0167-577X(02)00806-6
Shaffer, 1998, Dispersion and packing of carbon nanotubes, Carbon, 36, 1603, 10.1016/S0008-6223(98)00130-4
Rider, 2014, Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions, Nanotechnology, 25, 495607, 10.1088/0957-4484/25/49/495607
Mapleback, 2020, Development of stable boron nitride nanotube and hexagonal boron nitride dispersions for electrophoretic deposition, Langmuir, 36, 3425, 10.1021/acs.langmuir.0c00018
An, 2012, Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties, Carbon, 50, 4130, 10.1016/j.carbon.2012.04.061
Rider, 2015, Polymer nanocomposite – fiber model interphases: influence of processing and interface chemistry on mechanical performance, Chem. Eng. J., 269, 121, 10.1016/j.cej.2015.01.093
Tamrakar, 2015, Tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition, ACS Appl. Mater. Interfaces, 8, 1501, 10.1021/acsami.5b10903
Doshi, 2019, Carbon nanotube-based flexible sensors for human motion analysis
Besra, 2010, Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD), J. Eur. Ceram. Soc., 30, 1187, 10.1016/j.jeurceramsoc.2009.07.004
Barick, 2015, Effect of concentration and molecular weight of polyethylenimine on zeta potential, isoelectric point of nanocrystalline silicon carbide in aqueous and ethanol medium, Ceram. Int., 41, 4289, 10.1016/j.ceramint.2014.11.115
Thostenson, 2008, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks, Nanotechnology, 19, 215713, 10.1088/0957-4484/19/21/215713
Thostenson, 2009, Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites, Compos. Sci. Technol., 69, 801, 10.1016/j.compscitech.2008.06.023
Thostenson, 2006, Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing, Adv. Mater., 18, 2837, 10.1002/adma.200600977
Yeo, 2017, Functionalization and dispersion of carbon nanomaterials using an environmentally friendly ultrasonicated ozonolysis process, JoVE, 123
Rider, 2016, A comparison of mechanical and electrical properties in hierarchical composites prepared using electrophoretic or chemical vapor deposition of carbon nanotubes, MRS Adv, 1, 785, 10.1557/adv.2015.51
Brack, 2014, Evolution of magnetic and structural properties during iron plating of carbon nanotubes, J. Phys. Chem. C, 118, 13218, 10.1021/jp502078t
Gao, 2010, Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks, Philos. Mag. A, 90, 4085, 10.1080/14786430903352649
Kim, 2010, Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing, Compos. Part A Appl. Sci. Manuf., 41, 1531, 10.1016/j.compositesa.2010.06.016
Gao, 2010, Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes, Carbon N. Y., 48, 2649, 10.1016/j.carbon.2010.03.027
Gao, 2009, Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites, Carbon N. Y., 47, 1381, 10.1016/j.carbon.2009.01.030
Thostenson, 2008, Carbon nanotube-based health monitoring of mechanically fastened composite joints, Compos. Sci. Technol., 68, 2557, 10.1016/j.compscitech.2008.05.016
Murray, 2020, Hierarchical composites with electrophoretically deposited carbon nanotubes for in situ sensing of deformation and damage, Nanomaterials, 10, 1262, 10.3390/nano10071262
Natarajan, 2016, Multiscale metrologies for process optimization of carbon nanotube polymer composites, Carbon N. Y., 108, 381, 10.1016/j.carbon.2016.07.028
Zhitomirsky, 2006, Electrophoretic deposition of organic-inorganic nanocomposites, J. Mater. Sci., 41, 8186, 10.1007/s10853-006-0994-7
Dickerson, 2012
Hamaker, 1940, Formation of a deposit by electrophoresis, Trans. Faraday Soc., 35, 279, 10.1039/tf9403500279
Laxmidhar, 2007, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 52, 1, 10.1016/j.pmatsci.2006.07.001
Sarkar, 2013, Electrophoretic deposition of carbon nanotubes on 3-amino-propyl-triethoxysilane (APTES) surface functionalized silicon substrates, Nanomaterials, 3, 272, 10.3390/nano3020272
Sarkar, 1996, Electrophoretic deposition (EPD): mechanisms, kinetics , and application to ceramics, J. Am. Ceram. Soc., 79, 1987, 10.1111/j.1151-2916.1996.tb08929.x
Boccaccini, 2006, Electrophoretic deposition of carbon nanotubes, Carbon, 44, 3149, 10.1016/j.carbon.2006.06.021
Diba, 2016, Electrophoretic deposition of graphene-related materials: a review of the fundamentals, Prog. Mater. Sci., 82, 83, 10.1016/j.pmatsci.2016.03.002
Campagne, 2002, Electrokinetic approach of adhesion between polyester fibres and latex matrices, Polymer, 43, 6669, 10.1016/S0032-3861(02)00596-7
Pothan, 2002, Influence of chemical treatments on the electrokinetic properties of cellulose fibres, J. Adhes. Sci. Technol., 16, 157, 10.1163/156856102317293687
Haeri, 2015, ImageJ plugin for analysis of porous scaffolds used in tissue engineering, J. Open Res. Software, 3, 10.5334/jors.bn
Arena, 2017, Quantitating the cell: turning images into numbers with ImageJ, Wiley Interdiscip. Rev. Dev. Biol., 6, e260, 10.1002/wdev.260
Hartig, 2013, Basic image analysis and manipulation in ImageJ, Curr. Protoc. Mol. Biol., 102, 14, 10.1002/0471142727.mb1415s102
Glasbey, 1993, An analysis of histogram-based thresholding algorithms, CVGIP Graph. Models Image Process., 55, 532, 10.1006/cgip.1993.1040