Electrophoretic deposition: Novel in situ film growth mechanism of carbon nanocomposite films within non-conductive fabrics for multi-scale hybrid composites

Composites Science and Technology - Tập 200 - Trang 108415 - 2020
Dae Han Sung1,2, Sagar M. Doshi1,2, Colleen Murray2,3, Andrew N. Rider4, Erik T. Thostenson1,5,3
1Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, United States
2Center for Composite Materials, University of Delaware, Newark, DE, 19716, United States
3Department of Materials Science & Engineering, University of Delaware, Newark, DE, 19716, United States
4Defense Science and Technology, Australia, Fisherman's Bend, Victoria, 3207, Australia
5Center for Composite Materials, University of Delaware, Newark DE 19716, United States

Tài liệu tham khảo

Kamae, 2012, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase – Part I: the development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos. Appl. Sci. Manuf., 43, 1569, 10.1016/j.compositesa.2012.02.016 Yue, 2014, Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating, Compos. Sci. Technol., 99, 131, 10.1016/j.compscitech.2014.05.021 An, 2018, Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: fiber and interphase characterization, Compos. Sci. Technol., 166, 131, 10.1016/j.compscitech.2018.01.003 Godara, 2009, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, 47, 2914, 10.1016/j.carbon.2009.06.039 Coleman, 2006, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44, 1652, 10.1016/j.carbon.2006.02.038 Thostenson, 2006, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites, Carbon, 44, 3022, 10.1016/j.carbon.2006.05.014 Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X Doshi, 2015, Self-sensing carbon nanotube composites: processing and characterization, 752 Gao, 2010, Glass fibers with carbon nanotube networks as multifunctional sensors, Adv. Funct. Mater., 20, 1885, 10.1002/adfm.201000283 Doshi, 2018, Carbon nanotube coated fabric-based thin and flexible pressure sensors with ultra-wide sensing range, ACS Sens., 3, 1276, 10.1021/acssensors.8b00378 Hu, 2010, Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell, Nano Lett., 10, 838, 10.1021/nl903267n Sung, 2016, Characterization of thermoelectric properties of multifunctional multiscale composites and fiber-reinforced composites for thermal energy harvesting, Compos. B Eng., 92, 202, 10.1016/j.compositesb.2016.02.050 Robel, 2005, Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions, Adv. Mater., 17, 2458, 10.1002/adma.200500418 Ahmed, 2018, Integration of carbon nanotube sensing skins and carbon fiber composites for monitoring and structural repair of fatigue cracked metal structures, Compos. Struct., 203, 182, 10.1016/j.compstruct.2018.07.005 Ahmed, 2016, Development of a novel integrated strengthening and sensing methodology for steel structures using cnt-based composites, J. Struct. Eng., 4016202 Qian, 2010, Carbon nanotube-based hierarchical composites: a review, J. Mater. Chem., 20, 4751, 10.1039/c000041h Zhang, 2009, Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties, Compos. Sci. Technol., 69, 594, 10.1016/j.compscitech.2008.12.002 Qian, 2010, Carbon nanotube grafted silica fibres: characterising the interface at the single fibre level, Compos. Sci. Technol., 70, 393, 10.1016/j.compscitech.2009.11.014 An, 2013, Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers, ACS Appl. Mater. Interfaces, 5, 2022, 10.1021/am3028734 Streitberger, 2008 Hanaor, 2011, The effects of firing conditions on the properties of electrophoretically deposited titanium dioxide films on graphite substrates, J. Eur. Ceram. Soc., 31, 2877, 10.1016/j.jeurceramsoc.2011.07.007 Ishihara, 1996, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells, J. Am. Ceram. Soc., 79, 913, 10.1111/j.1151-2916.1996.tb08525.x Moon, 2001, High-yield purification process of singlewalled carbon nanotubes, J. Phys. Chem. B, 105, 5677, 10.1021/jp0102365 Gao, 2001, Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater., 13, 1770, 10.1002/1521-4095(200112)13:23<1770::AID-ADMA1770>3.0.CO;2-G Du, 2002, Preparation of carbon nanotubes composite sheet using electrophoretic deposition process, J. Mater. Sci. Lett., 21, 565, 10.1023/A:1015417206987 Azam, 2019, Direct deposition of multi-walled carbon nanotubes onto stainless steel and YEF foils using a simple electrophoretic deposition for electrochemical capacitor electrode, Mater. Res. Express, 6, 15501, 10.1088/2053-1591/aae293 Sharma, 2018, Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection, Sensor. Actuator. B Chem., 266, 329, 10.1016/j.snb.2018.03.118 Bahru, 2019, Structural analyses and deposition of purified carbon nanotubes using electrophoretic deposition, Mater. Res. Express, 6, 10.1088/2053-1591/ab2f09 Du, 2002, Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition, Mater. Lett., 57, 434, 10.1016/S0167-577X(02)00806-6 Shaffer, 1998, Dispersion and packing of carbon nanotubes, Carbon, 36, 1603, 10.1016/S0008-6223(98)00130-4 Rider, 2014, Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions, Nanotechnology, 25, 495607, 10.1088/0957-4484/25/49/495607 Mapleback, 2020, Development of stable boron nitride nanotube and hexagonal boron nitride dispersions for electrophoretic deposition, Langmuir, 36, 3425, 10.1021/acs.langmuir.0c00018 An, 2012, Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties, Carbon, 50, 4130, 10.1016/j.carbon.2012.04.061 Rider, 2015, Polymer nanocomposite – fiber model interphases: influence of processing and interface chemistry on mechanical performance, Chem. Eng. J., 269, 121, 10.1016/j.cej.2015.01.093 Tamrakar, 2015, Tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition, ACS Appl. Mater. Interfaces, 8, 1501, 10.1021/acsami.5b10903 Doshi, 2019, Carbon nanotube-based flexible sensors for human motion analysis Besra, 2010, Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD), J. Eur. Ceram. Soc., 30, 1187, 10.1016/j.jeurceramsoc.2009.07.004 Barick, 2015, Effect of concentration and molecular weight of polyethylenimine on zeta potential, isoelectric point of nanocrystalline silicon carbide in aqueous and ethanol medium, Ceram. Int., 41, 4289, 10.1016/j.ceramint.2014.11.115 Thostenson, 2008, Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks, Nanotechnology, 19, 215713, 10.1088/0957-4484/19/21/215713 Thostenson, 2009, Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites, Compos. Sci. Technol., 69, 801, 10.1016/j.compscitech.2008.06.023 Thostenson, 2006, Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing, Adv. Mater., 18, 2837, 10.1002/adma.200600977 Yeo, 2017, Functionalization and dispersion of carbon nanomaterials using an environmentally friendly ultrasonicated ozonolysis process, JoVE, 123 Rider, 2016, A comparison of mechanical and electrical properties in hierarchical composites prepared using electrophoretic or chemical vapor deposition of carbon nanotubes, MRS Adv, 1, 785, 10.1557/adv.2015.51 Brack, 2014, Evolution of magnetic and structural properties during iron plating of carbon nanotubes, J. Phys. Chem. C, 118, 13218, 10.1021/jp502078t Gao, 2010, Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks, Philos. Mag. A, 90, 4085, 10.1080/14786430903352649 Kim, 2010, Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing, Compos. Part A Appl. Sci. Manuf., 41, 1531, 10.1016/j.compositesa.2010.06.016 Gao, 2010, Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes, Carbon N. Y., 48, 2649, 10.1016/j.carbon.2010.03.027 Gao, 2009, Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites, Carbon N. Y., 47, 1381, 10.1016/j.carbon.2009.01.030 Thostenson, 2008, Carbon nanotube-based health monitoring of mechanically fastened composite joints, Compos. Sci. Technol., 68, 2557, 10.1016/j.compscitech.2008.05.016 Murray, 2020, Hierarchical composites with electrophoretically deposited carbon nanotubes for in situ sensing of deformation and damage, Nanomaterials, 10, 1262, 10.3390/nano10071262 Natarajan, 2016, Multiscale metrologies for process optimization of carbon nanotube polymer composites, Carbon N. Y., 108, 381, 10.1016/j.carbon.2016.07.028 Zhitomirsky, 2006, Electrophoretic deposition of organic-inorganic nanocomposites, J. Mater. Sci., 41, 8186, 10.1007/s10853-006-0994-7 Dickerson, 2012 Hamaker, 1940, Formation of a deposit by electrophoresis, Trans. Faraday Soc., 35, 279, 10.1039/tf9403500279 Laxmidhar, 2007, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 52, 1, 10.1016/j.pmatsci.2006.07.001 Sarkar, 2013, Electrophoretic deposition of carbon nanotubes on 3-amino-propyl-triethoxysilane (APTES) surface functionalized silicon substrates, Nanomaterials, 3, 272, 10.3390/nano3020272 Sarkar, 1996, Electrophoretic deposition (EPD): mechanisms, kinetics , and application to ceramics, J. Am. Ceram. Soc., 79, 1987, 10.1111/j.1151-2916.1996.tb08929.x Boccaccini, 2006, Electrophoretic deposition of carbon nanotubes, Carbon, 44, 3149, 10.1016/j.carbon.2006.06.021 Diba, 2016, Electrophoretic deposition of graphene-related materials: a review of the fundamentals, Prog. Mater. Sci., 82, 83, 10.1016/j.pmatsci.2016.03.002 Campagne, 2002, Electrokinetic approach of adhesion between polyester fibres and latex matrices, Polymer, 43, 6669, 10.1016/S0032-3861(02)00596-7 Pothan, 2002, Influence of chemical treatments on the electrokinetic properties of cellulose fibres, J. Adhes. Sci. Technol., 16, 157, 10.1163/156856102317293687 Haeri, 2015, ImageJ plugin for analysis of porous scaffolds used in tissue engineering, J. Open Res. Software, 3, 10.5334/jors.bn Arena, 2017, Quantitating the cell: turning images into numbers with ImageJ, Wiley Interdiscip. Rev. Dev. Biol., 6, e260, 10.1002/wdev.260 Hartig, 2013, Basic image analysis and manipulation in ImageJ, Curr. Protoc. Mol. Biol., 102, 14, 10.1002/0471142727.mb1415s102 Glasbey, 1993, An analysis of histogram-based thresholding algorithms, CVGIP Graph. Models Image Process., 55, 532, 10.1006/cgip.1993.1040