Electrophilic Cyclopentenone Isoprostanes in Neurodegeneration

Springer Science and Business Media LLC - Tập 33 - Trang 80-86 - 2007
Erik S. Musiek1, BethAnn McLaughlin2, Jason D. Morrow1
1Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, USA
2Departments of Neurology and Pharmacology, Vanderbilt University School of Medicine, Nashville, USA

Tóm tắt

Although oxidative stress has been implicated in the pathogenesis of numerous neurodegenerative conditions, the precise mechanisms by which reactive oxygen species (ROS) induce neuronal death are still being explored. The generation of reactive lipid peroxidation products is thought to contribute to ROS neurotoxicity. Isoprostanes (IsoPs), prostaglandin-like molecules formed in vivo via the ROS-mediated oxidation of arachidonic acid, have been previously demonstrated to be formed in increased amounts in the brains of patients with various neurodegenerative diseases. Recently, we have identified a new class of IsoPs, known as A2- and J2-IsoPs or cyclopentenone IsoPs, which are highly reactive electrophiles and form adducts with thiol-containing molecules, including cysteine residues in proteins and glutathione. Cyclopentenone IsoPs are favored products of the IsoP pathway in the brain and are formed abundantly after oxidant injury. These compounds also potently induce neuronal apoptosis by a mechanism which involves glutathione depletion, ROS generation, and activation of several redox-sensitive pathways that overlap with those involved in other forms of oxidative neurodegeneration. Cyclopentenone IsoPs also enhance neurodegeneration caused by other insults at biologically relevant concentrations. These data are reviewed, whereas new data demonstrating the neurotoxicity of J-ring IsoPs and a discussion of the possible role of cyclopentenone IsoPs as contributors to neurodegeneration are presented.

Tài liệu tham khảo

Alessandrini, A., Namura, S., Moskowitz, M. A., & Bonventre, J. V. (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 96, 12866–12869. Andersen, J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Natural Medicines, 10(Suppl), S18–S25. Bayir, H., Kagan, V. E., Tyurina, Y. Y., Tyurin, V., Ruppel, R. A., Adelson, P. D., et al. (2002). Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatric Research, 51, 571–578. Beal, M. F. (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Annals of Neurology, 38, 357–366. Brunetti, L., Michelotto, B., Orlando, G., Recinella, L., Di Nisio, C., Ciabattoni, G., et al. (2004). Aging increases amyloid beta-peptide-induced 8-iso-prostaglandin F2alpha release from rat brain. Neurobiology Aging, 25, 125–129. Camandola, S., Poli, G., & Mattson, M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor kappa B in neurons. Brain Research. Molecular Brain Research, 85, 53–60. Canals, S., Casarejos, M. J., de Bernardo, S., Rodriguez-Martin, E., & Mena, M. A. (2003). Nitric oxide triggers the toxicity due to glutathione depletion in midbrain cultures through 12-lipoxygenase. Journal of Biological Chemistry, 278, 21542–21549. Chen, Y., Morrow, J. D., & Roberts, L. J., 2nd (1999a). Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. Journal of Biological Chemistry, 274, 10863–10868. Chen, Y., Zackert, W. E., Roberts, L. J., 2nd, & Morrow, J. D. (1999b). Evidence for the formation of a novel cyclopentenone isoprostane, 15-A2t-isoprostane (8-iso-prostaglandin A2) in vivo. Biochimica Et Biophysica Acta, 1436, 550–556. Chu, C. T., Levinthal, D. J., Kulich, S. M., Chalovich, E. M., & DeFranco, D. B. (2004). Oxidative neuronal injury. The dark side of ERK1/2. European Journal of Biochemistry, 271, 2060–2066. Davies, S. S., Amarnath, V., & Roberts, L. J., 2nd (2004). Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway. Chemistry and Physics of Lipids, 128, 85–99. Du, S., McLaughlin, B., Pal, S., & Aizenman, E. (2002). In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. Journal of Neuroscience, 22, 7408–7416. Greco, A., Minghetti, L., Sette, G., Fieschi, C., & Levi, G. (1999). Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology, 53, 1876–1879. Keller, J. N., & Mattson, M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Reviews in the Neurosciences, 9, 105–116. Kruman, I., Bruce-Keller, A. J., Bredesen, D., Waeg, G., & Mattson, M. P. (1997). Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. Journal of Neuroscience, 17, 5089–5100. Lebeau, A., Terro, F., Rostene, W., & Pelaprat, D. (2004). Blockade of 12-lipoxygenase expression protects cortical neurons from apoptosis induced by beta-amyloid peptide. Cell Death and Differentiation, 11, 875–884. Lee, Y. J., Cho, H. N., Soh, J. W., Jhon, G. J., Cho, C. K., Chung, H. Y., et al. (2003). Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation. Experimental Cell Research, 291, 251–266. Li, Y., Maher, P., & Schubert, D. (1997). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron, 19, 453–463. Lovell, M. A., Xie, C., & Markesbery, W. R. (2001). Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiology Aging, 22, 187–194. Mark, R. J., Fuson, K. S., & May, P. C. (1999). Characterization of 8-epiprostaglandin F2alpha as a marker of amyloid beta-peptide-induced oxidative damage. Journal of Neurochemistry, 72, 1146–1153. Mattson, M. P., Fu, W., Waeg, G., & Uchida, K. (1997). 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport, 8, 2275–2281. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402, 309–313. Milne, G. L., Zanoni, G., Porta, A., Sasi, S., Vidari, G., Musiek, E. S., et al. (2004). The cyclopentenone product of lipid peroxidation, 15-A2t-isoprostane, is efficiently metabolized by HepG2 cells via conjugation with glutathione. Chemical Research in Toxicology, 17, 17–25. Milne, G. L., Musiek, E. S., & Morrow, J. D. (2005). The cyclopentenone (a(2)/j(2)) isoprostanes-unique, highly reactive products of arachidonate peroxidation. Antioxidants & Redox Signalling, 7, 210–220. Minghetti, L., Greco, A., Cardone, F., Puopolo, M., Ladogana, A., Almonti, S., et al. (2000). Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. Journal of Neuropathology and Experimental Neurology, 59, 866–871. Montine, K. S., Olson, S. J., Amarnath, V., Whetsell, W. O., Jr., Graham, D. G., & Montine, T. J. (1997). Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. American Journal of Pathology, 150, 437–443. Montine, T. J., Beal, M. F., Cudkowicz, M. E., O’Donnell, H., Margolin, R. A., McFarland, L., et al. (1999a). Increased CSF F2-isoprostane concentration in probable AD. Neurology, 52, 562–565. Montine, T. J., Beal, M. F., Robertson, D., Cudkowicz, M. E., Biaggioni, I., O’Donnell, H., et al. (1999b). Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology, 52, 1104–1105. Montine, T. J., Markesbery, W. R., Zackert, W., Sanchez, S. C., Roberts, L. J., 2nd, & Morrow, J. D. (1999c). The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. American Journal of Pathology, 155, 863–868. Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., et al. (2002). Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biology & Medicine, 33, 620–626. Montine, T. J., Montine, K. S., Reich, E. E., Terry, E. S., Porter, N. A., & Morrow, J. D. (2003). Antioxidants significantly affect the formation of different classes of isoprostanes and neuroprostanes in rat cerebral synaptosomes. Biochemical Pharmacology, 65, 611–617. Montine, K. S., Quinn, J. F., Zhang, J., Fessel, J. P., Roberts, L. J., 2nd, Morrow, J. D., et al. (2004). Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chemistry and Physics of Lipids, 128, 117–124. Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., & Roberts, L. J., 2nd (1990). A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proceedings of the National Academy of Sciences of the United States of America, 87, 9383–9387. Morrow, J. D., Minton, T. A., Mukundan, C. R., Campbell, M. D., Zackert, W. E., Daniel, V. C., et al. (1994). Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. Journal of Biological Chemistry, 269, 4317–4326. Morrow, J. D., & Roberts, L. J., 2nd (1998). Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods in Enzymology, 300, 3–12. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., & Coyle, J. T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron, 2, 1547–1558. Musiek, E. S., Breeding, R. S., Milne, G. L., Zanoni, G., Morrow, J. D., & McLaughlin, B. (2006). Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration. Journal of Neurochemistry, 97, 1301–1313. Musiek, E. S., & Morrow, J. D. (2005). F2-Isoprostanes as Markers of Oxidant Stress: In L. G. Costa, E. Hodgson, D. Lawrence and D. J. Reed (Eds) An Overview, in Current Protocols in Toxicology, Supp. 24. (pp. 17.5–17.6). Edison, NJ: Wiley. Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H., Matsushita, K., et al. (2001). Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 98, 11569–11574. Neely, M. D., Sidell, K. R., Graham, D. G., & Montine, T. J. (1999). The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. Journal of Neurochemistry, 72, 2323–2333. Nishiyama, M., Watanabe, T., Ueda, N., Tsukamoto, H., & Watanabe, K. (1993). Arachidonate 12-lipoxygenase is localized in neurons, glial cells, and endothelial cells of the canine brain. Journal of Histochemistry and Cytochemistry, 41, 111–117. Noshita, N., Sugawara, T., Hayashi, T., Lewen, A., Omar, G., & Chan, P. H. (2002). Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. Journal of Neuroscience, 22, 7923–7930. Perry, G., Roder, H., Nunomura, A., Takeda, A., Friedlich, A. L., Zhu, X., et al. (1999). Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport, 10, 2411–2415. Picklo, M. J., Amarnath, V., McIntyre, J. O., Graham, D. G., & Montine, T. J. (1999). 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. Journal of Neurochemistry, 72, 1617–1624. Pratico, D., Clark, C. M., Lee, V. M., Trojanowski, J. Q., Rokach, J., & FitzGerald, G. A. (2000). Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Annals of Neurology, 48, 809–812. Pratico, D., MY Lee, V., Trojanowski, J. Q., Rokach, J., & Fitzgerald, G. A. (1998). Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB Journal, 12, 1777–1783. Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q., & Lee, V. M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. Journal of Neuroscience, 21, 4183–4187. Pratico, D., Zhukareva, V., Yao, Y., Uryu, K., Funk, C. D., Lawson, J. A., et al. (2004). 12/15-lipoxygenase is increased in Alzheimer’s disease: Possible involvement in brain oxidative stress. American Journal of Pathology, 164, 1655–1662. Reich, E. E., Markesbery, W. R., Roberts, L. J., 2nd, Swift, L. L., Morrow, J. D., & Montine, T. J. (2001). Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. American Journal of Pathology, 158, 293–297. Roberts, L. J., 2nd, & Morrow, J. D. (2002). Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation. Cellular and Molecular Life Sciences, 59, 808–820. Sayre, L. M., Zelasko, D. A., Harris, P. L., Perry, G., Salomon, R. G., & Smith, M. A. (1997). 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. Journal of Neurochemistry, 68, 2092–2097. Shringarpure, R., Grune, T., Sitte, N., & Davies, K. J. (2000). 4-Hydroxynonenal-modified amyloid-beta peptide inhibits the proteasome: possible importance in Alzheimer’s disease. Cellular and Molecular Life Sciences, 57, 1802–1809. Smith, W. W., Norton, D. D., Gorospe, M., Jiang, H., Nemoto, S., Holbrook, N. J., et al. (2005). Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. Journal of Cell Biology, 169, 331–339. Stanciu, M., Wang, Y., Kentor, R., Burke, N., Watkins, S., Kress, G., et al. (2000). Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. Journal of Biological Chemistry, 275, 12200–12206. Tan, S., Sagara, Y., Liu, Y., Maher, P., & Schubert, D. (1998). The regulation of reactive oxygen species production during programmed cell death. Journal of Cell Biology, 141, 1423–1432. Tan, S., Schubert, D., & Maher, P. (2001). Oxytosis: A novel form of programmed cell death. Current Topics in Medicinal Chemistry, 1, 497–506. Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 21, 3872–3878. Xie, C., Lovell, M. A., & Markesbery, W. R. (1998). Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radical Biology & Medicine, 25, 979–988. Xie, C., Lovell, M. A., Xiong, S., Kindy, M. S., Guo, J., Xie, J., et al. (2001). Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Radical Biology & Medicine, 31, 73–81. Zagol-Ikapitte, I., Masterson, T. S., Amarnath, V., Montine, T. J., Andreasson, K. I., Boutaud, O., et al. (2005). Prostaglandin H-derived adducts of proteins correlate with Alzheimer’s disease severity. Journal of Neurochemistry, 94, 1140–1145. Zanoni, G., Porta, A., & Vidari G. (2002). First total synthesis of A(2) isoprostane. Journal of Organic Chemistry, 67, 4346–4351. Zanoni, G., Porta, A., Castronovo, F., & Vidari, G. (2003). First total synthesis of J(2) isoprostane. Journal of Organic Chemistry, 68, 6005–6010. Zhang, Y., Wang, H., Li, J., Jimenez, D. A., Levitan, E. S., Aizenman E., et al. (2004). Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. Journal of Neuroscience, 24, 10616–10627. Zhu, J. H., Kulich, S. M., Oury, T. D., & Chu, C. T. (2002). Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases. American Journal of Pathology, 161, 2087–2098.