Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chất thải điện tử ở các quốc gia đang phát triển: tình hình hiện tại về sự phát sinh, chính sách và công nghệ tái chế liên quan đến đại dịch coronavirus
Tóm tắt
Đại dịch coronavirus đã tác động nghiêm trọng đến xã hội, từ y tế đến việc phát sinh chất thải. Đối với chất thải điện tử, tình hình cũng không khác biệt. Sự thay đổi hành vi đã gia tăng mức tiêu thụ thiết bị điện tử và sẽ có khả năng thay đổi lượng chất thải điện tử trong những năm tới. Hơn nữa, những tác động này khác nhau giữa các quốc gia đang phát triển và các quốc gia phát triển. Các quốc gia đang phát triển cần cải thiện chính sách thu gom và tái chế thiết bị điện tử của họ, và ngay cả trong số các quốc gia phát triển, sự khác biệt cũng rất lớn. Bài báo tổng quan này nhằm phân tích sự khác nhau giữa các quốc gia phát triển và đang phát triển, cũng như tác động của đại dịch đối với việc phát sinh chất thải điện tử. Một phân tích về các chính sách công của các nhóm quốc gia này và quản lý chất thải điện tử đã được thực hiện, cùng với các phương pháp hiện tại của Brazil, Ấn Độ, Trung Quốc và Nam Phi trong việc xử lý chất thải của họ. Các chính sách và pháp luật của các quốc gia phát triển đã cho thấy rằng việc quản lý chất thải điện tử được xử lý toàn diện hơn so với các nền kinh tế đang phát triển. Lượng tiêu thụ thiết bị điện tử tăng cao sẽ dẫn đến sự gia tăng về phát sinh chất thải điện tử trong những năm tới. Triển vọng tương lai cho thấy rằng các quốc gia đang phát triển nên tập trung nỗ lực vào các chính sách quản lý chất thải của họ để đạt được các mục tiêu tái chế, tập trung vào kinh tế tuần hoàn và các mục tiêu phát triển bền vững.
Từ khóa
#chất thải điện tử #đại dịch coronavirus #chính sách tái chế #các quốc gia đang phát triển #kinh tế tuần hoànTài liệu tham khảo
Abdou TR, Botelho Junior AB, Espinosa DCR, Tenório JAS (2021) Recycling of polymeric composites from industrial waste by pyrolysis: deep evaluation for carbon fibers reuse. Waste Manag 120:1–9. https://doi.org/10.1016/j.wasman.2020.11.010
Al-Salem SM, Antelava A, Constantinou A et al (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197:177–198. https://doi.org/10.1016/j.jenvman.2017.03.084
Al-Salem SM, Alosairi Y, Constantinou A (2022) Effect of COVID-19 lockdown measures on the plastic waste generation trends and distribution of microplastics in the Northwestern Arabian/Persian Gulf. Ocean Coast Manag 216:105979. https://doi.org/10.1016/j.ocecoaman.2021.105979
Althaf S, Babbitt CW (2021) Disruption risks to material supply chains in the electronics sector. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.105248
Andò S (2020) Gravimetric separation of heavy minerals in sediments and rocks. Minerals 10:273. https://doi.org/10.3390/min10030273
Andrade DF, Castro JP, Garcia JA et al (2022a) Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131739
Andrade LM, Botelho Junior AB, Rosario CGA et al (2022b) Copper recovery through biohydrometallurgy route: chemical and physical characterization of magnetic (m), non-magnetic (nm) and mix samples from obsolete smartphones. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-022-02775-z
Avarmaa K, Yliaho S, Taskinen P (2018) Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting. Waste Manag 71:400–410. https://doi.org/10.1016/j.wasman.2017.09.037
Awasthi AK, Li J (2017) Management of electrical and electronic waste: a comparative evaluation of China and India. Renew Sustain Energy Rev 76:434–447. https://doi.org/10.1016/j.rser.2017.02.067
Ayode Otitoju T, Ugochukwu Okoye P, Chen G et al (2020) Advanced ceramic components: materials, fabrication, and applications. J Ind Eng Chem 85:34–65. https://doi.org/10.1016/j.jiec.2020.02.002
Baldé CP, Forti V, Gray V et al (2021a) Australia. In: The global e-waste
Baldé CP, Forti V, Gray V et al (2021b) Brazil. In: The global e-waste. Accessed 7 Feb 2021
Baldé CP, Forti V, Gray V et al (2021c) China. In: The global e-waste. https://globalewaste.org/statistics/country/china/2019/. Accessed 8 Feb 2021
Baldé CP, Forti V, Gray V et al (2021d) United States of America. In: The global e-waste. https://globalewaste.org/statistics/country/united-states-of-america/2019/. Accessed 10 Nov 2021
Baldé CP, Forti V, Gray V et al (2021e) South Africa. In: The global e-waste. https://globalewaste.org/statistics/country/south-africa/2019/. Accessed 10 Nov 2021
Baldé CP, Forti V, Gray V et al (2021f) Italy. In: The global e-waste. https://globalewaste.org/statistics/country/italy/2019/. Accessed 10 Nov 2021
Baldé CP, Forti V, Gray V et al (2021g) United Kingdom of Great Britain and Northern Ireland. In: The global e-waste. https://globalewaste.org/statistics/country/south-africa/2019/. Accessed 10 Nov 2021
Baldé CP, Kuehr R (2021) Covid19 pandemic on e-waste: the first three quarters of 2020. Bonn, Germany
Baldé CP, Forti V, Gray V et al (2019) India. https://globalewaste.org/statistics/country/india/2019/. Accessed 13 Jun 2022
Baldé CP, Forti V, Gray V et al (2020) Nigeria. In: The global e-waste. https://globalewaste.org/statistics/country/nigeria/2019/. Accessed 10 Feb 2021
Beccarello M, Di Foggia G (2018) Moving towards a circular economy: economic impacts of higher material recycling targets. Mater Today Proc 5:531–543. https://doi.org/10.1016/j.matpr.2017.11.115
Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag 33:2354–2363. https://doi.org/10.1016/j.wasman.2013.07.017
Blengini GA, Latunussa CEL, Eynard U et al (2020) European Commission, study on the EU’s list of critical raw materials—final report (2020)
Borthakur A (2020) Policy approaches on e-waste in the emerging economies: a review of the existing governance with special reference to India and South Africa. J Clean Prod 252:119885. https://doi.org/10.1016/j.jclepro.2019.119885
Borthakur A, Govind M (2017) Emerging trends in consumers’ e-waste disposal behaviour and awareness: a worldwide overview with special focus on India. Resour Conserv Recycl 117:102–113. https://doi.org/10.1016/j.resconrec.2016.11.011
Botelho Junior AB, Dreisinger DB, Espinosa DCR, Tenório JAS (2018) Pre-reducing process kinetics to recover metals from nickel leach waste using chelating resins. Int J Chem Eng 2018:1–7. https://doi.org/10.1155/2018/9161323
Botelho Junior AB, Dreisinger DB, Espinosa DCR (2019a) A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Min Metall Explor 36:199–213. https://doi.org/10.1007/s42461-018-0016-8
Botelho Junior AB, Espinosa DCR, Dreisinger D, Tenório JAS (2019b) Recovery of nickel and cobalt from nickel laterite leach solution using chelating resins and pre-reducing process. Can J Chem Eng 97:1181–1190. https://doi.org/10.1002/cjce.23359
Botelho Junior AB, Jiménez Correa MM, Espinosa DCR et al (2019c) Recovery of Cu(II) from nickel laterite leach using prereduction and chelating resin extraction: Batch and continuous experiments. Can J Chem Eng 97:924–929. https://doi.org/10.1002/cjce.23306
Botelho Junior AB, Vicente AA, Espinosa DCR, Tenório JAS (2019d) Recovery of metals by ion exchange process using chelating resin and sodium dithionite. J Mater Res Technol 8:4464–4469. https://doi.org/10.1016/j.jmrt.2019.07.059
Botelho Junior AB, Vicente ADA, Espinosa DCR, Tenório JAS (2020) Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Sep Sci Technol 55:788–798. https://doi.org/10.1080/01496395.2019.1574828
Botelho Junior AB, Espinosa DCR, Tenório JAS (2021a) The use of computational thermodynamic for yttrium recovery from rare earth elements-bearing residue. J Rare Earths 39:201–207. https://doi.org/10.1016/j.jre.2020.02.019
Botelho Junior AB, Espinosa DCR, Tenório JAS (2021b) Selective separation of Sc(III) and Zr(IV) from the leaching of bauxite residue using trialkylphosphine acids, tertiary amine, tri-butyl phosphate and their mixtures. Sep Purif Technol 279:119798. https://doi.org/10.1016/j.seppur.2021.119798
Botelho Junior AB, Espinosa DCR, Vaughan J, Tenório JAS (2021c) Recovery of scandium from various sources: a critical review of the state of the art and future prospects. Miner Eng 172:107148. https://doi.org/10.1016/j.mineng.2021.107148
Botelho Junior AB, Stopic S, Friedrich B et al (2021d) Cobalt recovery from Li-ion battery recycling: a critical review. Metals (basel) 11:1999. https://doi.org/10.3390/met11121999
Botelho Junior AB, Pinheiro ÉF, Espinosa DCR et al (2022) Adsorption of lanthanum and cerium on chelating ion exchange resins: kinetic and thermodynamic studies. Sep Sci Technol 57:60–69. https://doi.org/10.1080/01496395.2021.1884720
Calgaro CO, Schlemmer DF, Da Silva MDCR et al (2015) Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manag 45:289–297. https://doi.org/10.1016/j.wasman.2015.05.017
Cao J, Xu J, Wang H et al (2018) Innovating collection modes for waste electrical and electronic equipment in China. Sustainability (switzerland) 10:1446. https://doi.org/10.3390/su10051446
Cardamone GF, Ardolino F, Arena U (2021) About the environmental sustainability of the European management of WEEE plastics. Waste Manag 126:119–132. https://doi.org/10.1016/j.wasman.2021.02.040
Castro FD, Botelho Júnior AB, Bassin JP et al (2023) E-waste policies and implementation: a global perspective. In: Singh P, Verma P, Singh R et al (eds) Waste management and resource recycling in the developing world. Elsevier, First, pp 271–307
CdC RAEE (2017) Rapporto annuale ritiro e trattamento dei rifiuti da apparecchiature elettriche ed elettroniche in italia 2017
Croci E, Colelli F (2017) Sfide E prospettive Del Gestione Dei Raee
CdC RAEE (2019a) Rapporto Annuale Ritiro e Trattamento dei Rifiuti da Apparecchiature Elettriche ed Elettroniche in Italia
CdC RAEE (2019b) Rapporto Annuale Ritiro e Trattamento dei Rifiuti da Apparecchiature Elettriche ed elettroniche in Italia
Cenci MP, Dal Berto FC, Camargo PSS, Veit HM (2021a) Separation and concentration of valuable and critical materials from wasted LEDs by physical processes. Waste Manag 120:136–145. https://doi.org/10.1016/j.wasman.2020.11.023
Cenci MP, Scarazzato T, Munchen DD et al (2021b) Eco-friendly electronics—a comprehensive review. Adv Mater Technol 2001263:2001263. https://doi.org/10.1002/admt.202001263
Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges and opportunities—a review. J Environ Chem Eng 6:1288–1304. https://doi.org/10.1016/j.jece.2018.01.032
Chen M, Huang J, Ogunseitan OA et al (2015) Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids. Waste Manag 41:142–147. https://doi.org/10.1016/j.wasman.2015.03.037
Chu H, Qian C, Tian B et al (2022) Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resour Conserv Recycl 178:106018. https://doi.org/10.1016/j.resconrec.2021.106018
Desouky OA, El-Mougith AA, Hassanien WA et al (2016) Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arab J Chem 9:S795–S805. https://doi.org/10.1016/j.arabjc.2011.08.010
Dias P, Javimczik S, Benevit M et al (2016) Recycling WEEE: extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manag 57:220–225. https://doi.org/10.1016/j.wasman.2016.03.016
Dias P, Machado A, Huda N, Bernardes AM (2018) Waste electric and electronic equipment (WEEE) management: a study on the Brazilian recycling routes. J Clean Prod 174:7–16. https://doi.org/10.1016/j.jclepro.2017.10.219
Diaz F, Flerus B, Nagraj S et al (2018) Comparative analysis about degradation mechanisms of Printed Circuit Boards (PCBs) in slow and fast pyrolysis: the influence of heating speed. J Sustain Metall 4:205–221. https://doi.org/10.1007/s40831-018-0163-7
dos Santos DM, Buzzi DC, Botelho Junior AB, Espinosa DCR (2022) Recycling of printed circuit boards: ultrasound-assisted comminution and leaching for metals recovery. J Mater Cycles Waste Manag 24:1991–2001. https://doi.org/10.1007/s10163-022-01453-2
Du N, Ma H, Lin X et al (2018) Experimental investigation on the heat transfer characteristics in process of printed circuit boards pyrolysis under nitrogen flow. Sci Total Environ 636:1032–1039. https://doi.org/10.1016/j.scitotenv.2018.04.365
Du N, Ma H, Zhang H et al (2019) Simulation study on the heat transfer characteristics of a single printed circuit board particle in the pyrolysis process. Fuel Process Technol 192:45–56. https://doi.org/10.1016/j.fuproc.2019.04.016
DECRETO LEGISLATIVO 14 marzo 2014, n. 49 (2014) Consiglio dei ministri
DECRETO No 10.240, DE 12 DE FEVEREIRO DE 2020 (2020a) Presidencia da Republica, Secretaria-Geral, Subchefia para Assuntos Juridicos, Brasilia
DECRETO No 10.240, DE 12 DE FEVEREIRO DE 2020 (2020b) Presidencia da Republica, Secretaria-Geral, Subchefia para Assuntos Juridicos, Brasilia
European Parliament (2003) DIRECTIVE 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Off J Eur Union L 37:24–38
European Parliament (2012a) DIRECTIVE 2012a/19/EU of the European Parliament and of the Council of 4 July 2012a on waste electrical and electronic equipment (WEEE) (recast) (Text with EEA relevance), pp 38–71
European Parliament (2012b) DIRECTIVE 2012b/19/EU of the European Parliament and of the Council of 4 July 2012b on waste electrical and electronic equipment (WEEE) (recast) (Text with EEA relevance), pp 38–71
European Commision (2020) Critical raw materials resilience: charting a path towards greater security and sustainability. https://ec.europa.eu/docsroom/documents/42849. Accessed 6 Oct 2020
Faraji F, Golmohammadzadeh R, Pickles CA (2022) Potential and current practices of recycling waste printed circuit boards: a review of the recent progress in pyrometallurgy. J Environ Manag 316:115242. https://doi.org/10.1016/j.jenvman.2022.115242
Ferdous W, Manalo A, Siddique R et al (2021) Recycling of landfill wastes (tyres, plastics and glass) in construction—a review on global waste generation, performance, application and future opportunities. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2021.105745
Flerus B, Billmann L, Bokelmann K et al (2019) Recovery of gallium from smartphones—part I: thermal and mechanical pretreatment. In: Proceedings of the 10th European metallurgical conference, EMC 2019, vol 3, pp 959–972
Forti V, Barde CP, Kuehr R (2018) E-waste statistics: guidelines on classification reporting and indicators. Bonn
Forti V, Baldé CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020. In: The global e-waste. https://www.itu.int/myitu/-/media/Publications/2020-Publications/Global-E-waste-Monitor-2020.pdf. Accessed 21 Nov 2021
Garcia JA, da Silva JRA, Pereira-Filho ER (2021) LIBS as an alternative method to control an industrial hydrometallurgical process for the recovery of Cu in waste from electro-electronic equipment (WEEE). Microchem J. https://doi.org/10.1016/j.microc.2021.106007
Ghosh B, Ghosh MK, Parhi P et al (2015) Waste Printed Circuit Boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19. https://doi.org/10.1016/j.jclepro.2015.02.024
Ghosh SK, Debnath B, Baidya R et al (2016) Waste electrical and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations. Waste Manag Res J Sustain Circ Econ 34:693–707. https://doi.org/10.1177/0734242X16652956
Grant W (2020) DEFRA confirm household WEEE collection targets for 2020
Guimarães LF, Botelho Junior AB, Espinosa DCR (2022) Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Miner Eng 183:107597. https://doi.org/10.1016/j.mineng.2022.107597
Hammadi MQ, Yassen RS, Abid KN (2017) Recovery of platinum and palladium from scrap automotive catalytic converters. Al-Khwarizmi Eng J 13:131–141. https://doi.org/10.22153/kej.2017.04.002
Harper M (2020) DEFRA release the proposed 2020 household WEEE collections targets
Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472. https://doi.org/10.1016/j.jclepro.2013.08.043
Hubau A, Chagnes A, Minier M et al (2019) Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards. Waste Manag 91:62–71. https://doi.org/10.1016/j.wasman.2019.04.041
Ichikowitz R, Hattingh TS (2020) Consumer e-waste recycling in South Africa. S Afr J Ind Eng 31:44–57. https://doi.org/10.7166/31-3-2416
Ignatuschtschenko E (2017) E-waste management in China: bridging the formal and informal sectors. J Chin Govern 2:385–410. https://doi.org/10.1080/23812346.2017.1379629
Ikiz E, Maclaren VW, Alfred E, Sivanesan S (2021) Impact of COVID-19 on household waste flows, diversion and reuse: the case of multi-residential buildings in Toronto, Canada. Resour Conserv Recycl 164:105111. https://doi.org/10.1016/j.resconrec.2020.105111
Ilankoon IMSK, Ghorbani Y, Chong MN et al (2018) E-waste in the international context—a review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag 82:258–275. https://doi.org/10.1016/j.wasman.2018.10.018
ILO (2019) Decent work in the management of electrical and electronic waste (e-waste)
Ilyas S, Lee JC, Chi RA (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132:138–143. https://doi.org/10.1016/j.hydromet.2012.11.010
Işıldar A, Rene ER, van Hullebusch ED, Lens PNL (2018) Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour Conserv Recycl 135:296–312. https://doi.org/10.1016/j.resconrec.2017.07.031
Islam A, Ahmed T, Awual MR et al (2020) Advances in sustainable approaches to recover metals from e-waste—a review. J Clean Prod 244:118815. https://doi.org/10.1016/j.jclepro.2019.118815
Islam A, Swaraz AM, Teo SH et al (2021a) Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: a critical review. J Clean Prod 323:129015. https://doi.org/10.1016/j.jclepro.2021.129015
Islam A, Swaraz AM, Teo SH et al (2021b) Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: a critical review. J Clean Prod 323:129015. https://doi.org/10.1016/j.jclepro.2021.129015
Jadhao P, Chauhan G, Pant KK, Nigam KDP (2016) Greener approach for the extraction of copper metal from electronic waste. Waste Manag 57:102–112. https://doi.org/10.1016/j.wasman.2015.11.023
Jadhao PR, Ahmad E, Pant KK, Nigam KDP (2020) Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication. Waste Manag 118:150–160. https://doi.org/10.1016/j.wasman.2020.08.028
Jadhav U, Hocheng H (2015) Hydrometallurgical recovery of metals from large printed circuit board pieces. Sci Rep 5:14574. https://doi.org/10.1038/srep14574
Jeyaraj P (2021) Management of e-waste in India—challenges and recommendations. World J Adv Res Rev 11:193–218. https://doi.org/10.30574/wjarr.2021.11.2.0329
Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag 57:64–90. https://doi.org/10.1016/j.wasman.2016.08.004
Kaya M (2019) Electronic waste and printed circuit board recycling technologies
Koochaki-Mohammadpour SMA, Torab-Mostaedi M, Talebizadeh-Rafsanjani A, Naderi-Behdani F (2014) Adsorption isotherm, kinetic, thermodynamic, and desorption studies of lanthanum and dysprosium on oxidized multiwalled carbon nanotubes. J Dispers Sci Technol 35:244–254. https://doi.org/10.1080/01932691.2013.785361
Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42. https://doi.org/10.1016/j.resconrec.2017.01.018
Langley J (2020) WEEE targets missed for third consecutive year
Larios-Gómez E, Fischer L, Peñalosa M, Ortega-Vivanco M (2021) Purchase behavior in COVID-19: a cross study in Mexico, Colombia, and Ecuador. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06468
Lee CH, Tang LW, Popuri SR (2011) A study on the recycling of scrap integrated circuits by leaching. Waste Manag Res 29:677–685. https://doi.org/10.1177/0734242X10380995
Liang Y, Song Q, Wu N et al (2021) Repercussions of COVID-19 pandemic on solid waste generation and management strategies. Front Environ Sci Eng. https://doi.org/10.1007/s11783-021-1407-5
Lima LR, Gutierrez RF, Cruz SA (2022) A perspective of the COVID-19 pandemic in the plastic waste management and cooperatives of waste pickers in Brazil. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00130-0
Liu K, Zhang Z, Zhang FS (2016) Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process. J Hazard Mater 318:216–223. https://doi.org/10.1016/j.jhazmat.2016.07.005
Lydall M, Nyanjowa W, James Y (2017) Mapping South Africa’s waste electrical and electronic equipment ( WEEE ) dismantling, pre-processing and processing technology landscape—waste research development and innovation roadmap research report. https://www.ewasa.org/wp-content/uploads/2018/04/weee_technology_landscape_assessment_report.pdf. Accessed 21 Nov 2021
LEI No 12.305, DE 2 DE AGOSTO DE 2010 (2010) Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos
Marques ACAC, De SU, De SU et al (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna—an example from the staurozoans (Cnidaria). Biota Neotrop 16:1–3. https://doi.org/10.1590/1676-0611
Marra A, Cesaro A, Belgiorno V (2018) Separation efficiency of valuable and critical metals in WEEE mechanical treatments. J Clean Prod 186:490–498. https://doi.org/10.1016/j.jclepro.2018.03.112
Martins TR, Mrozinski NS, Bertuol DA, Tanabe EH (2020a) Recovery of copper and aluminium from coaxial cable wastes using comparative mechanical processes analysis. Environ Technol (united KINGDOM). https://doi.org/10.1080/09593330.2020.1725141
Martins TR, Tanabe EH, Bertuol DA (2020b) Innovative method for the recycling of end-of-life LED bulbs by mechanical processing. Resour Conserv Recycl 161:104875. https://doi.org/10.1016/j.resconrec.2020.104875
Martins LS, Guimarães LF, Botelho Junior AB et al (2021) Electric car battery: an overview on global demand, recycling and future approaches towards sustainability. J Environ Manag 295:113091. https://doi.org/10.1016/j.jenvman.2021.113091
Méndez L, Forniés E, Garrain D et al (2021) Upgraded metallurgical grade silicon and polysilicon for solar electricity production: a comparative life cycle assessment. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147969
MMA, ABINEE, ABRADISTI et al (2019) Acordo Setorial de Eletroeletrônicos. In: SINIR
München DD, Veit HM (2017) Neodymium as the main feature of permanent magnets from hard disk drives (HDDs). Waste Manag 61:372–376. https://doi.org/10.1016/j.wasman.2017.01.032
Naughton CC (2020) Will the COVID-19 pandemic change waste generation and composition? The need for more real-time waste management data and systems thinking. Resour Conserv Recycl 162:105050. https://doi.org/10.1016/j.resconrec.2020.105050
Neto IFF, Sousa CA, Brito MSCA et al (2016) A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards. Sep Purif Technol 164:19–27. https://doi.org/10.1016/j.seppur.2016.03.007
Nogueira CA, Paiva AP, Oliveira PC et al (2014) Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters. J Hazard Mater 278:82–90. https://doi.org/10.1016/j.jhazmat.2014.05.099
Ongondo FO, Williams ID (2012) A critical review of the UK household WEEE collection network. Proc Inst Civil Eng Waste Resour Manag 165:13–23. https://doi.org/10.1680/warm.2012.165.1.13
Ottoni M, Dias P, Xavier LH (2020) A circular approach to the e-waste valorization through urban mining in Rio de Janeiro, Brazil. J Clean Prod 261:120990. https://doi.org/10.1016/j.jclepro.2020.120990
Panchal R, Singh A, Diwan H (2021) Economic potential of recycling e-waste in India and its impact on import of materials. Resour Policy 74:102264. https://doi.org/10.1016/j.resourpol.2021.102264
Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164:1152–1158. https://doi.org/10.1016/j.jhazmat.2008.09.043
Pathak P, Srivastava RR (2017) Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew Sustain Energy Rev 78:220–232. https://doi.org/10.1016/j.rser.2017.04.062
Patil RA, Ramakrishna S (2020) A comprehensive analysis of e-waste legislation worldwide. Environ Sci Pollut Res 27:14412–14431. https://doi.org/10.1007/s11356-020-07992-1
Pekarkova Z, Williams ID, Emery L, Bone R (2021) Economic and climate impacts from the incorrect disposal of WEEE. Resour Conserv Recycl 168:105470. https://doi.org/10.1016/j.resconrec.2021.105470
Perea CG, Baena OJR, Ihle CF, Estay H (2021) Copper leaching from wastes electrical and electronic equipment (WEEE) using alkaline monosodium glutamate: thermodynamics and dissolution tests. Clean Eng Technol 5:100312. https://doi.org/10.1016/j.clet.2021.100312
Perez ID, Botelho Junior AB, Aliprandini P, Espinosa DCR (2020) Copper recovery from nickel laterite with high-iron content: a continuous process from mining waste. Can J Chem Eng 98:957–968. https://doi.org/10.1002/cjce.23667
Pickin J, Randell P, Trinh J et al (2018a) National waste report 2020. https://www.environment.gov.au/system/files/resources/7381c1de-31d0-429b-912c-91a6dbc83af7/files/national-waste-report-2018a.pdf
Pickin J, Randell P, Trinh J et al (2018b) National waste report 2020. https://www.environment.gov.au/system/files/resources/7381c1de-31d0-429b-912c-91a6dbc83af7/files/national-waste-report-2018b.pdf
Pinheiro RF, Michielin L, Martins TR et al (2021) Application of mechanical processing operations for the recycling of nickel metal hydride batteries. J Mater Cycles Waste Manag 23:2148–2161. https://doi.org/10.1007/s10163-021-01280-x
Pollard J, Osmani M, Cole C et al (2021) A circular economy business model innovation process for the electrical and electronic equipment sector. J Clean Prod 305:127211. https://doi.org/10.1016/j.jclepro.2021.127211
Premathilake DS, Botelho Junior AB, Tenório JAS et al (2023) Designing of a decentralized pretreatment line for EOL-LIBs based on recent literature of LIB recycling for black mass. Metals (basel) 13:374. https://doi.org/10.3390/met13020374
RESOLUÇÃO No 2, DE 18 DE JUNHO DE 2021 (2021) In: Brasil. https://www.in.gov.br/en/web/dou/-/resolucao-n-2-de-18-de-junho-de-2021-327352416. Accessed 22 Nov 2021
Rabatho JP, Tongamp W, Takasaki Y et al (2013) Recovery of Nd and Dy from rare earth magnetic waste sludge by hydrometallurgical process. J Mater Cycles Waste Manag 15:171–178. https://doi.org/10.1007/s10163-012-0105-6
Rene ER, Sethurajan M, Kumar Ponnusamy V et al (2021) Electronic waste generation, recycling and resource recovery: technological perspectives and trends. J Hazard Mater 416:125664. https://doi.org/10.1016/j.jhazmat.2021.125664
Sachs J, Schmidt-Traub G, Kroll C et al (2020) The sustainable development goals and COVID-19. Sustainable development report 2020
Savvilotidou V, Hahladakis JN, Gidarakos E (2015) Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs. Waste Manag 45:314–324. https://doi.org/10.1016/j.wasman.2015.05.025
Segura-Bailón B, Lapidus GT (2021) Selective recovery of copper contained in waste PCBs from cellphones with impurity inhibition in the citrate-phosphate system. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2021.105699
Sengupta D, Ilankoon IMSK, Dean Kang K, Nan Chong M (2022) Circular economy and household e-waste management in India: Integration of formal and informal sectors. Miner Eng 184:107661. https://doi.org/10.1016/j.mineng.2022.107661
Sharma N, Chauhan G, Kumar A, Sharma SK (2017) Statistical optimization of heavy metal (Cu2+ and Co2+) extraction from printed circuit boards and mobile batteries using chelation technology. Ind Eng Chem Res 56:6805–6819. https://doi.org/10.1021/acs.iecr.7b01481
Shirodkar N, Terkar R (2017) Stepped recycling: the solution for e-waste management and sustainable manufacturing in India. Mater Today Proc 4:8911–8917. https://doi.org/10.1016/j.matpr.2017.07.242
Shittu OS, Williams ID, Shaw PJ (2021) Global e-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag 120:549–563. https://doi.org/10.1016/j.wasman.2020.10.016
Silveira AVM, Fuchs MS, Pinheiro DK et al (2015) Recovery of indium from LCD screens of discarded cell phones. Waste Manag 45:334–342. https://doi.org/10.1016/j.wasman.2015.04.007
Song X, Lu B, Wu W (2019) Environmental management of E-waste in China. In: Electronic waste management and treatment technology. Elsevier Inc., pp 285–310
Statista (2021) Consumer electronics. https://www.statista.com/outlook/dmo/ecommerce/electronics-media/consumer-electronics/worldwide. Accessed 22 Nov 2021
Stubbings WA, Nguyen LV, Romanak K et al (2019) Flame retardants and plasticizers in a Canadian waste electrical and electronic equipment (WEEE)dismantling facility. Sci Total Environ 675:594–603. https://doi.org/10.1016/j.scitotenv.2019.04.265
Takahashi VCI, Botelho Junior AB, Espinosa DCR, Tenório JAS (2020) Enhancing cobalt recovery from Li-ion batteries using grinding treatment prior to the leaching and solvent extraction process. J Environ Chem Eng 8:103801. https://doi.org/10.1016/j.jece.2020.103801
Thakur P, Kumar S (2020) Metallurgical processes unveil the unexplored “sleeping mines” e-waste: a review. Environ Sci Pollut Res 27:32359–32370. https://doi.org/10.1007/s11356-020-09405-9
Trading Economics (2021) Commodities. https://tradingeconomics.com/commodities. Accessed 20 Nov 2021
The World Bank (2020a) GDP. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD. Accessed 31 Aug 2020
The World Bank (2020b) GDP. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD. Accessed 30 Aug 2020
UNIDO Statistics (2020a) World manufacturing production statistics for quarter I, 2020
UNIDO Statistics (2020b) World manufacturing production statistics for quarter III 2020
UNIDO Statistics (2020c) World manufacturing production statistics for quarter II 2020
UNIDO Statistics (2020d) World manufacturing production statistics for quarter I, 2020
UNIDO Statistics (2021a) World manufactuting production statistics for quarter III 2021
UNIDO Statistics (2021b) World manufacturing production statistics for quarter I 2021
United Nations (2021) The sustainable development goals report 2021
Utimura SK, Rosario CGA, Botelho AB et al (2017) Bioleaching process for metal recovery from waste materials. In: Zhang L, Drelich JW, Neelameggham NR et al (eds) Energy technology 2017. Springer, Cham, pp 283–290
Vasconcelos DS, Tenório JAS, Botelho Junior AB, Espinosa DCR (2023) Circular recycling strategies for LFP batteries: a review focusing on hydrometallurgy sustainable processing. Metals (basel) 13:543. https://doi.org/10.3390/met13030543
Veit HM, Bernardes AM (2014) Electronic waste—recycling techniques. Elsevier
Wang J, Xie F, Wang W et al (2020) Eco-friendly leaching of gold from a carbonaceous gold concentrate in copper-citrate-thiosulfate solutions. Hydrometallurgy 191:105204. https://doi.org/10.1016/j.hydromet.2019.105204
Wong NWM (2018) Electronic waste governance under “one country, two systems”: Hong kong and mainland china. Int J Environ Res Public Health 15:2347. https://doi.org/10.3390/ijerph15112347
Wu D, Lee Y, Ngui Y (2021) Chip shortage set to worsen as covid rampages through Malaysia. In: Bloomberg. https://www.bloomberg.com/news/articles/2021-08-23/chip-shortage-set-to-worsen-as-covid-rampages-through-malaysia. Accessed 23 Nov 2021
Xavier LH, Ottoni M, Lepawsky J (2021) Circular economy and e-waste management in the Americas: Brazilian and Canadian frameworks. J Clean Prod 297:126570. https://doi.org/10.1016/j.jclepro.2021.126570
Xin B, Zhang D, Zhang X et al (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol 100:6163–6169. https://doi.org/10.1016/j.biortech.2009.06.086
Xin L, Xi C, Sagir M, Wenbo Z (2023) How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method. Technol Forecast Soc Change 187:122188. https://doi.org/10.1016/j.techfore.2022.122188
Yoon HS, Kim CJ, Chung KW et al (2014) Leaching kinetics of neodymium in sulfuric acid from E-scrap of NdFeB permanent magnet. Korean J Chem Eng 31:706–711. https://doi.org/10.1007/s11814-013-0259-5
Zeng X, Ali SH, Tian J, Li J (2020) Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-15246-4
Zhang L, Xu Z (2016) A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J Clean Prod 127:19–36. https://doi.org/10.1016/j.jclepro.2016.04.004
Zhang Y, Liu S, Xie H et al (2012) Current status on leaching precious metals from waste printed circuit boards. Proc Environ Sci 16:560–568. https://doi.org/10.1016/j.proenv.2012.10.077
Zhang S, Ding Y, Liu B, Chang C (2017) Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manag 65:113–127. https://doi.org/10.1016/j.wasman.2017.04.003
Zhang Z, Malik MZ, Khan A et al (2022) Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. Sci Total Environ 807:150856. https://doi.org/10.1016/j.scitotenv.2021.150856